Зачем нужна шкала силы землетрясения. Землетрясения

Сильнейшие землетрясения на протяжении всей истории человечества наносили колоссальный материальный ущерб и являлись причиной огромного количества жертв среди населения. Первые упоминания о подземных толчках датируются 2000 годами до нашей эры.
И не смотря на достижения современной науки и развитие технологий, никто до сих пор не может предсказать точное время, когда стихия нанесёт удар, поэтому часто становится невозможной быстрая и своевременная эвакуация людей.

Землетрясения – это стихийные бедствия, в результате которых гибнет больше всего людей, гораздо больше чем, например, при ураганах или тайфунах.
В этом рейтинге мы расскажем про 12 самых сильных и разрушительных землетрясений в истории человечества.

12. Лиссабон

1 ноября 1755 года, в столице Португалии, городе Лиссабоне произошло сильнейшее землетрясение, в последствии названное Великим лиссабонским землетрясением. Страшным стечением обстоятельств являлось то, что 1 ноября – День Всех Святых и тысячи жителей собрались на мессе в церквях Лиссабона. Эти церкви, как и другие здания по всему городу не выдержали мощных толчков и рухнули, похоронив под своими обломками тысячи несчастных.

Затем на город хлынула 6-метровая волна цунами, накрывшая оставшихся в живых людей, мечущихся в панике по улочкам разрушенного Лиссабона. Разрушения и человеческие жертвы были колоссальными! В результате землетрясения, которое длилось не более 6 минут, вызванного им цунами и многочисленных пожаров, охвативших город, погибло не менее 80.000 жителей столицы Португалии.

Многие известные деятели и философы касались этого смертоносного землетрясения в своих работах, например, Иммануил Кант, пытавшийся найти научное объяснение столь масштабной трагедии.

11. Сан – Франциско

18 апреля 1906 года, в 5:12 утра мощные подземные толчки сотрясли спящий Сан-Франциско. Сила толчков составляла 7,9 балла и в результате сильнейшего землетрясения в городе было разрушено 80% зданий.

После первых подсчетов погибших, власти сообщили о 400 жертвах, но в дальнейшем их число возросло до 3000 человек. Однако основной ущерб городу нанесло не само землетрясение, а вызванный им чудовищный пожар. В результате было уничтожено более 28.000 зданий по всему Сан-Франциско, материальный ущерб составил более 400 миллионов долларов по курсу того времени.
Многие жители сами поджигали свои полуразрушенные дома, которые были застрахованы от пожара, но не от землетрясения.

10. Мессина

Крупнейшим землетрясением в Европе стало землетрясение в Сицилии и Южной Италии, когда 28 декабря 1908 года, в результате мощнейших подземных толчков силой в 7,5 баллов по шкале Рихтера, по оценкам различных экспертов погибло от 120 до 200.000 человек.
Эпицентром катастрофы стал Мессинский пролив, расположенный между Аппенинским полуостровом и Сицилией, больше всего пострадал город Мессина, где практически не осталось ни одного уцелевшего здания. Много разрушений принесла и огромная волна цунами, вызванная подземными толчками и усиленная подводным оползнем.

Задокументированный факт: спасатели смогли вытащить двух истощенных, обезвоженных, но живых детей из-под обломков, спустя 18 дней после удара стихии! Многочисленные и обширные разрушения были вызваны в первую очередь низким качеством зданий в Мессине и других частях Сицилии.

Неоценимую помощь жителям Мессины оказали русские моряки императорского флота. Корабли в составе учебной группы совершали плавание по Средиземному морю и в день трагедии оказались в порту Аугуста на Сицилии. Сразу после подземных толчков, моряки организовали спасательную операцию и благодаря их отважным действиям, были спасены тысячи жителей.

9. Хайюань

Одним из самых смертоносных землетрясений в истории человечества, стало разрушительное землетрясение, ударившее 16 декабря 1920 года по уезду Хайюань, входящий в провинцию Ганьсу.
По оценкам историков, в тот день погибло не менее 230.000 человек. Сила толчков была такова, что целые селения пропадали в разломах земной коры, очень сильно пострадали такие крупные города как Сиань, Тайюань и Ланчжоу. Невероятно, но сильные волны, образовавшиеся после удара стихии были зафиксированы даже в Норвегии.

Современные исследователи полагают что количество погибших было гораздо больше и насчитывает не менее 270.000 человек. В то время это было 59 % населения уезда Хайюань. Несколько десятков тысяч человек погибли от холода, после того как их жилища были разрушены стихией.

8. Чили

Землетрясение в Чили 22 мая 1960 года, считается сильнейшим землетрясением в истории сейсмологии, сила толчков составила 9.5 баллов по шкале Рихтера. Землетрясение было настолько мощным, что вызвало волны цунами высотой более 10 метров, накрывшие не только побережье Чили, но и причинившие огромный ущерб городу Хило на Гавайях, а часть волн достигла побережья Японии и Филиппин.

Погибло более 6.000 человек, большинство из которых попали под удар цунами, разрушения были немыслимые. Без жилья и крова остались 2 миллиона человек, а сумма ущерба составила более 500 миллионов долларов. В некоторых районах Чили, удар волны цунами был настолько силён, что многие дома унесло на 3 км вглубь материка.

7. Аляска

27 марта 1964 года, на территории Аляски произошло самое сильное землетрясение в истории Америки. Сила толков составила 9,2 балла по шкале Рихтера и это землетрясение стало сильнейшим после удара стихии в Чили в 1960 году.
Погибло 129 человек, из которых жертвами подземных толчков стали 6 несчастных, остальных смыло огромной волной цунами. Наибольшие разрушения стихия вызвала в Анкоридже, а подземные толчки были зарегистрированы в 47 штатах США.

6. Кобе

Землетрясение в Кобе, в Японии, 16 января 1995 года, стало одним из самых разрушительных в истории. Подземные толчки силой в 7,3 балла начались в 05:46 утра по местному времени и продолжались несколько суток. В результате погибло более 6000 человек, 26.000 получили ранения.

Ущерб, нанесенный инфраструктуре города было просто огромен. Было разрушено более 200.000 зданий, в порту Кобе оказались уничтожены 120 причалов из 150, электроснабжения не было несколько дней. Общий ущерб от удара стихии составил около 200 миллиардов долларов, что на тот момент являлось 2,5 % от всего ВВП Японии.

На помощь пострадавшим жителям кинулись не только правительственные службы, но и японская мафия – якудза, члены которой доставляли пострадавшим от удара стихии воду и продукты.

5. Суматра

26 декабря 2004 года, сильнейшее цунами, обрушившееся на берега Таиланда, Индонезии, Шри-Ланки и другие страны, было вызвано разрушительным землетрясением силой в 9,1 балла по шкале Рихтера. Эпицентр подземных толчков находился в Индийском океане, недалеко от острова Симёлуэ, возле северо-западного побережья Суматры. Землетрясение было необычайно масштабным, произошел сдвиг земной коры на расстоянии 1200 км.

Высота волн цунами достигала 15 -30 метров и жертвами стихии по различным оценкам стали от 230 до 300.000 человек, хотя точное количество погибших подсчитать невозможно. Многих людей просто смыло в океан.
Одной из причин такого количества жертв стало отсутствие системы раннего предупреждения в Индийском океане, с помощью которого можно было сообщить местному населению о приближении цунами.

4. Кашмир

8 октября 2005 года, в регионе Кашмир, находящимся под контролем Пакистана, произошло сильнейшее землетрясение в Южной Азии за последние сто лет. Сила подземных толчков составила 7, 6 баллов по шкале Рихтера, что сопоставимо с землетрясением в Сан-Франциско, в 1906 году.
В результате удара стихии погибли по официальным данным – 84.000 человек, по неофициальным – более 200.000. Спасательные работы были затруднены в результате военного конфликта между Пакистаном и Индией в этом регионе. Многие села и деревни оказались полностью стёрты с лица земли, а также был полностью уничтожен город Балакот в Пакистане. В Индии жертвами землетрясения стали 1300 человек.

3. Гаити

12 января 2010 года на Гаити произошло землетрясение силой 7 баллов по шкале Рихтера. Основной удар пришелся на столицу государства – город Порт-о-Пренс. Последствия были ужасны: практически 3 миллиона человек остались без крова, были разрушены все больницы и тысячи жилых зданий. Количество жертв было просто огромным, по различным оценкам от 160 до 230.000 человек.

В город хлынули преступники, сбежавшие из уничтоженной стихией тюрьмы, на улицах стали нередки случаи мародерства, грабежей и разбоев . Материальный ущерб от землетрясения оценивается в 5, 6 миллиардов долларов.

Не смотря на то, что посильную помощь в устранение последствий стихии Гаити оказали множество государств – Россия, Франция, Испания, Украина, США, Канада и десятки других, спустя более пяти лет после землетрясения, более 80.000 человек до сих пор проживают в импровизированных лагерях для беженцев.
Гаити является беднейшей страной в западном полушарии и это стихийное бедствие нанесло непоправимый удар по экономике и уровню жизни граждан.

2. Землетрясение в Японии

11 марта 2011 года в регионе Тохоку произошло сильнейшее землетрясение в истории Японии. Эпицентр находился восточнее острова Хонсю и сила подземных толчков составила 9,1 баллов по шкале Рихтера.
В результате удара стихии, была сильно повреждена АЭС в городе Фукусима и разрушены энергоблоки на реакторах 1, 2, и 3. Многие районы стали непригодными для жизни в результате радиоактивного излучения.

После подводных толчков, огромная волна цунами накрыла побережье и уничтожила тысячи административных и жилых зданий. Погибло более 16.000 человек, 2.500 до сих пор считаются пропавшими без вести.

Материальный ущерб также оказался колоссальным – более 100 миллиардов долларов. А учитывая, что на полное восстановление разрушенной инфраструктуры могут уйти годы, сумма ущерба может вырасти в несколько раз.

1. Спитак и Ленинакан

В истории СССР есть много трагических дат и одна из самых известных – землетрясение, сотрясшее Армянскую ССР 7 декабря 1988 года. Мощнейшие подземные толчки всего за полминуты практически полностью уничтожили северную часть республики, захватив территорию, на которой проживало более 1 миллиона жителей.

Последствия стихии были чудовищны: практически полностью был стёрт с лица Земли город Спитак, сильно пострадал Ленинакан, разрушены более 300 сёл и уничтожено 40% промышленных мощностей республики. Более 500 тысяч армян остались без крова, погибло по разным оценкам, от 25.000 до 170.000 жителей, инвалидами остались 17.000 граждан.
Помощь в восстановлении разрушенной Армении оказали 111 государств и все республики СССР.

В разных странах принято по-разному оценивать интенсивность землетрясения.

· В России и некоторых других странах принята 12-балльная шкала Медведева - Шпонхойера - Карника .

· В Европе - 12-балльная Европейская макросейсмическая шкала .

· В США - 12-балльная модифицированная шкала Меркалли .

· В Японии - 7-балльная шкала Японского метеорологического агентства .

  • 12-балльная шкала интенсивности землетрясений Медведева - Шпонхойера - Карника (MSK-64) была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СП 14.13330.2014 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ. В Казахстане в настоящее время используется СНиП РК 2.03-30-2006 «Строительство в сейсмических районах».
Балл. Сила землетрясения Краткая характеристика
I. Не ощущается Не ощущается. Отмечается только сейсмическими приборами.
II. Очень слабые толчки Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя в верхних этажах зданий, и очень чуткими домашними животными
III. Слабое Ощущается только внутри некоторых зданий, как сотрясение от грузовика.
IV. Интенсивное Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен. Внутри здания сотрясение ощущает большинство людей.
V. Довольно сильное Под открытым небом ощущается многими, внутри домов - всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих. Ощущается людьми и вне зданий, качаются тонкие ветки деревьев. Хлопают двери.
VI. Сильное Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются.
VII. Очень сильное Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми.
VIII. Разрушительное Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются. Падают фабричные трубы.
IX. Опустошительное Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся.
X. Уничтожающее Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов.
XI. Катастрофа Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти полностью разрушаются. Сильное искривление и выпучивание железнодорожных рельсов, разрушаются мосты.
XII. Сильная катастрофа Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Изменяется рельеф. Ни одно сооружение не выдерживает.
  1. МЕХАНИЗМ ОЧАГА.

Выяснение причин землетрясений и объяснение их механизма - одна из важнейших задач сейсмологии. Общая картина происходящего представляется следующей.

В очаге происходят разрывы и интенсивные неупругие деформации среды, приводящие к землетрясению. Деформации в самом очаге носят необратимый характер, а в области, внешней к очагу, являются сплошными, упругими и преимущественно обратимыми. Именно в этой области распространяются сейсмические волны. Очаг может либо выходить на поверхность, как при некоторых сильных землетрясениях, либо находиться под ней, как во всех случаях слабых землетрясений.

(Рейда теория)

Ответ: а) Разрыв сплошной горных пород наступает в результате накопления упругих деформаций выше предела, которой может выдержать горная порода. Деформации возникающие при перемещении соседних блоков земной коры.

Б) перемещение блоков не происходит внезапно, они нарастают.

В) движение в момент землетрясения состоит из упругой отдачи-резкого смещения сторон разрыва в положение, в котором отсутствуют упругие деформации.

Г) Сейсмические волны возникают на поверхности разрыва.

Д) Энергия освобожденная во время землетрясений, до землетрясений была энергией упругой деформации горных пород.

  1. ЧАСТОТА И ГЕОГРАФИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ЗЕМЛЕТРЯСЕНИЙ.
  1. ХАРАКТЕРИСТИКА ОСНОВНЫХ СЕЙСМИЧЕСКИХ ЗОН.
  1. УПРУГИЕ ДЕФОРМАЦИИ и напряжения

Упругая деформация - деформация, исчезающая после прекращения действий на тело внешних сил. При этом тело принимает первоначальные размеры и форму.

Область физики, изучающая упругие деформации, называется теорией упругости.

При упругой деформации её величина не зависит от предыстории и полностью определяется механическими напряжениями, то есть является однозначной функцией от напряжений. Для большинства веществ эту зависимость можно с хорошей точностью считать прямой пропорциональностью. При этом упругая деформация описывается законом Гука. Наибольшее напряжение, при котором закон Гука справедлив, называется пределом пропорциональности.

Некоторые вещества (металлы, каучуки) могут претерпевать значительную упругую деформацию, в то время как у других (керамики, прессованные материалы) даже ничтожная деформация перестаёт быть упругой.

Максимальное механическое напряжение, при котором деформация ещё остаётся упругой, называется пределом текучести. Выше этого предела деформация становится пластической.

Упругие деформации могут изменяться периодически со временем (упругие колебания). Процесс распространения упругих колебаний в среде называют упругими волнами.

Преде́л пропорциона́льности () - 1) Максимальная величина напряжения, при котором ещё выполняется закон Гука, то есть деформация тела прямо пропорциональна приложенной нагрузке (силе). Следует заметить, что во многих материалах нагружение до предела упругости вызывает обратимые (то есть упругие в общем-то) деформации, но непропорциональные напряжениям. Кроме того, эти деформации могут «запаздывать» за ростом нагрузки как при нагружении, так и при разгружении.

2) Напряжение, при котором отступление от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованный касательной к кривой "нагрузка-удлинение" в точке Pпц и осью нагрузки, увеличивается на 50% от своего первоначального значения на упругом участке.

Зако́н Гу́ка - утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. п.), пропорциональна приложенной к этому телу силе. Открыт в 1660 году английским учёным Робертом Гуком .

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональностисвязь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

Более 2000 пет назад в Китае был создан прибор, предупреждающий людей от наступающего землетрясения. Этот прибор имел форму лягушки, с овальным основанием и четырьмя, наклонными плоскостями, в которых были размещены металлические шарики. При наступлении землетрясения, колебания, вызванные сейсмическими волнами раскачивали прибор и шарики выпадали из своих гнезд на металлическую подставку. Это было предупреждение о приближающемся землетрясении. Таким образом,с первых дней появления науки сейсмологии, её задачей было предупреждение людей о приближающемся землетрясении, тем самым,обеспечение безопасности жизни людей от природных катастроф. Потребовалось 2000 лет, чтобы появилось печально известное решение международной конференции в Лондоне в 1996г., в котором говорится, что прогноз землетрясений не возможен. Это означает, что усилия тысячи ученых, посвятивших свою жизнь решению этой проблемы человечества и миллиарды долларов, истраченные на исследования, были напрасны? О том, что это решение принято «скептиками», как называют ученых, потерявших надежду найти положительный результат в исследовании конкретной проблемы, от отчаяния, было понятно, уже тогда, т.к. с июня 1995г. пресса более 20 стран мира сообщала о том, что Сахалинское землетрясение было спрогнозировано автором и МЧС России получило предупреждение из МЧС Армении,за три месяца до трагедии, когда исчез с лица Земли город Нефтегорск. В начале ХХ века, впервые были получены изменения отношения продольных (VP) и поперечных (VS) сейсмических волн в зоне развития очага сильных землетрясений. И это отношение стало первым предвестником землетрясений. Ученые во многих развитых странах мира начали проводить исследования, с целью создания технологии прогнозирования землетрясений, способной определять место (координаты широты и долготы очага), время (год, месяц, день) и силу (магнитуду) будущих землетрясений. В настоящее время известны более 300 предвестников землетрясений, которые так и не привели к решению этой проблемы и вопрос прогнозирования землетрясений оставался без ответа. В чем причина неудачи? По катастрофическим последствиям, которые приводят к огромному количеству жертв и разрушений, землетрясения являются наиболее опасными природными катастрофами. Количество жертв от землетрясений, в ХХ веке составило 1,4 миллиона (Осипов,2001), из которых около 1,0 –го миллиона жертв приходится на последние 30 лет. За первые 12 лет, XXI века, число погибших от землетрясений приближается к 1,0-му миллиону (около 800 000): Индонезия (о.Суматра, 2004)- около 300 000 ; Гаити –около 300 000; Япония (Фукусима)…Ежегодно происходят: 1 землетрясение – с магнитудой до 9; около 15 землетрясений - до 8; 140 - до 7; 900 - до 6; 8000 - до 5. В настоящее время эти цифры имеют тенденцию идти по нарастающей. Вопросом прогнозирования землетрясений занимались и занимаются ученые всех стран мира и на эти исследования были потрачены миллиарды долларов, однако землетрясения продолжают уничтожать города, людей, страны. В чем причина беспомощности ученых всех стран мира? Политиков и МЧС эти вопросы не интересуют, а Правительства обращаются к ним, когда происходит катастрофа и гибнут люди, города и страны. На Лондонской конференции в 1996г. многие специалисты пришли к выводу, что сейсмическое прогнозирование безнадежно. По результатам конференции было опубликовано:«Сейсмическое прогнозирование безнадежно? Полный пессимизм относительно возможности надежного прогноза землетрясений высказали некоторые геофизики на состоявшейся в ноябре 1996 г. в Лондоне международной конференции. Р.Геллер (R.Geller; Токийский университет) отметил, что, несмотря на затраченные международным сообществом ученых усилия и средства, не удалось за все последние десятилетия обнаружить ни одного достойного доверия признака надвигающегося сейсмического события (некоторым сигналам, находящимся на уровне шумов или даже ниже, придавалось излишнее значение). К такому мнению присоединился сейсмолог С.Кремпин (S.Crampin; Эдинбургский университет, Шотландия). Скептицизм специалистов усилился после того, как несколько греческих сейсмологов заявили, что им якобы удалось прогнозировать землетрясения по предшествующим вариациям магнитного поля Земли; в решительной критике их отчета указывалось на совершенно неопределенные сведения о месте и времени предстоящих толчков, об их интенсивности. Многие ученые теперь полагают, что землетрясения вообще относятся к числу критических явлений, которые возникают в системе, выведенной на грань неустойчивого равновесия. Предсказать конкретно, когда произойдет критическое явление, почти невозможно; по мнению сейсмолога И.Мейна (I.Main; Эдинбургский университет), построить прогноз землетрясения столь же сложно, как заранее установить, какая именно снежинка вызовет снежную лавину в горах. Однако, отнеся подземные толчки к разряду критических явлений, специалисты теперь могут внести новые поправки в строительные кодексы с учетом научных критериев сейсмостойкости сооружений (существующие правила в основном опираются на голую эмпирику). New Scientist. 1996. V.152. N 2056. P.10 (Великобритания)». Итак, в 1996г. международная конференция в Лондоне, опираясь на мнение Р.Геллера (Токийский Университет) и двух сотрудников Эдинбургского Университета, вынесла приговор более чем столетней работе ученых мира о невозможности заранее определить место, время и магнитуду будущего землетрясения. Видимо авторам этого проекта не было известно о том, что в 1995г., т.е. за один год до принятия Лондонского решения, автором этих строк, была разработана физическая модель, позволяющая теоретически рассчитывать параметры будущих землетрясений на планете: место(координаты широты и долготы), время (год, месяц и день) и силу (магнитуду) на неограниченное время вперед - методика краткосрочного прогнозирования землетрясений и других природных катастроф (Публикации: 1.Прогнозирование землетрясений. Монография. Повышение сейсмостойкости зданий и сооружений. Изд. «Айастан», Ереван, 1989,глава, 8.5, стр. 316. 2.Электромагнитная модель механизма возникновения очага землетрясений. «Вестник» Международной Академии наук экологии и безопасности жизнедеятельности,Санкт-Петербург,№ 7(19),2000, 3. Закономерность связи сейсмических волн, испускаемых очагом землетрясений. «Вестник» Международной Академии наук экологии и безопасности жизнедеятельности,Санкт-Петербург,№ 7(31),2000 4. Краткосрочный прогноз землетрясений и других природных катастроф. Монография.Санкт-Петербург,2000, стр. 135. 5. Earthquakes and natural disasters shorth-term prediction.Sankt-Peterburg. 2000, p. 128.) и по ней были рассчитаны и переданы в МЧС России (за три месяца до трагедии) параметры Сахалинского землетрясения (май,1995г.), после которого исчез с лица Земли г. Нефтегорск (публикации: «Комсомольская правда»,06.06.1995. Москва, Россия; «Сюкан Синчо», 07.07.1995,Токио,Япония; BBC,1995, Лондон,Великобритания; Турция, «Marmara»1995; Иран, «Alik»1995; США …более 20 стран). За прошедшие 17 лет, по этой методике были рассчитаны параметры (место, время и магнитуда) более 40 000 будущих землетрясений и других природных катастроф, с точностью до 95%, в том числе все, произошедшие за это время катастрофы Краткосрочный прогноз землетрясений инструментальными, а тем более, вероятностными методами исследований, которыми оперирует современная сейсмология, действительно не возможен. Поэтому, до сих пор, все усилия ученых в этом направлении сейсмологии, терпят неудачу. Чем отличаются исследования, проводимые в настоящее время от тех, которые применялись в 1996г.? Ни чем, только увеличилось количество и, возможно качество, применяемой аппаратуры. Поэтому рассчитывать на успех, в решении проблемы краткосрочного прогнозирования землетрясений «современными методами инструментальных исследований» не приходится. В этом вопросе Лондонская конференция принесла бы больше пользы, если бы в решении принятом на ней было добавлено; «современными методами инструментальных исследований». Краткосрочный прогноз землетрясений и других природных катастроф возможен и он существует. Прогнозировать будущие природные катастрофы с абсолютной точностью можно,на неограниченное время вперед Метод состоит из двух частей. 1. Проводится теоретический расчет места, времени и силы будущих землетрясений… 2. За месяц до расчитанного времени, сейсмостанции данной страны проводят исследования изменения параметров,указанного региона и уточняют теоретический расчет. Это позволит,за 3-4 дня, до землетрясения, точно указать место, время и силу будущего землетрясения. 3. Полученные точные данные будущего землетрясения, цунами… передаются Правительству, которое и принимет решение о безопасности жизни людей.

Шкалы интенсивности землетрясений шкалы интенсивности землетрясений в баллах

В дневное время ощущается многими из тех, кто находится в помещениях, и лишь немногими на открытом воздухе. В ночное время некоторые спящие просыпаются. Посуда звенит, окна и двери хлопают, стены трещат. Ощущение такое, как будто в дом врезалась грузовая автомашина. Стоящие автомашины заметно покачиваются на рессорах

Баллы Проявления
I

Не ощущается никем, за исключением единичных наблюдателей, находящихся в особо благоприятных условиях

II

Ощущается лишь немногими лицами, находящимися в покое, особенно на верхних этажах зданий. Предметы, подвешенные на тонких шнурах, могут раскачиваться

III

Заметно ощущается в помещениях, особенно на верхних этажах зданий, однако многими не идентифицируется как землетрясение. Стоящие автомобили могут слегка раскачиваться на рессорах. Вибрация – как от прошедшей поблизости грузовой автомашины. Можно оценить длительность сотрясения

IV
V

Ощущается почти всеми; в ночное время многие спящие просыпаются. Бьётся часть посуды, трескаются стёкла в окнах, местами появляются трещины в штукатурке, опрокидывается неустойчивая мебель. Иногда наблюдается раскачивание столбов, деревьев и других высоких предметов, могут остановиться часы с маятником

VI

Ощущается всеми; многие в испуге выбегают из домов. Иногда смещается тяжёлая мебель, в некоторых местах осыпается штукатурка и опрокидываются трубы. Разрушения небольшие

VII

Все жители выбегают из домов. В зданиях, возведённых по специальным проектам, повреждения незначительные, в типовых, хорошо выстроенных зданиях – от лёгких до умеренных, в плохо спроектированных или выстроенных – значительные. Опрокидывается часть труб. Толчки ощущаются в автомашинах

VIII

В зданиях, возведённых по специальным проектам, – лёгкие повреждения, в типовых зданиях – значительные повреждения, иногда частичное разрушение, в плохо выстроенных – значительные разрушения. Происходит отрыв панелей от каркасов. Опрокидываются и падают печные и фабричные трубы, колонны, памятники, стены. Перемещается тяжёлая мебель. Наблюдаются выбросы небольших объёмов песка и ила. Изменяется положение уровня воды в колодцах и скважинах

IX

В зданиях, возведённых по специальным проектам, значительные повреждения, наклон хорошо спроектированных и выстроенных каркасных зданий, в типовых зданиях большие повреждения, частичное разрушение. Здания смещаются относительно своих фундаментов. Значительные трещины на земной поверхности. Разрывы подземных трубопроводов

X

Разрушение некоторых хорошо выстроенных деревянных зданий и большинства каменных и каркасных вместе с их фундаментами. Многочисленные трещины наземной поверхности. Искривление рельсов на железных дорогах. Значительные оползни по берегам рек и на склонах. Выбросы песка и ила. Выплеск воды и затопление берегов

XI

Только немногие каменные здания сохраняют устойчивость. Обрушение мостов. Широкие трещины на поверхности земли. Подземные трубопроводы полностью выходят из строя. Сплавы и оползни в рыхлых грунтах. Значительный изгиб рельсов на железных дорогах

XII

Тотальное разрушение. На поверхности земли образуются волны. Изменяются отметки поверхности и линия горизонта. Предметы подбрасываются в воздух

Шкалы интенсивности землетрясений Меркалли

Их применяются для определения интенсивности землетрясения по внешним признакам, на основе данных о разрушениях. Может быть применена в том случае, когда отсутствуют прямые данные об интенсивности подземных толчков, например, из-за отсутствия соответствующего оборудования. В шкале Меркалли для определения степени интенсивности землетрясения используются римские цифры.

Шкала названа по имени Джузеппе Меркалли, который заложил основы её использования в 1883 и 1902 годах. Позднее Чарльзом Рихтером в шкалу были внесены изменения, после чего её стали называть модифицированной шкалой Меркалли (MM). Сейчас шкала Меркалли используется в основном в США.

Современный вид шкалы Меркалли

I.

Не ощущается людьми.

II.

Ощущается в спокойной обстановке на верхних этажах зданий.

III.

Ощущается в помещениях; кажется, будто под окнами проезжает лёгкий грузовик. Качаются висячие предметы.

IV.

Кажется, будто проезжает тяжёлый грузовик; звенят оконные стёкла, посуда, скрипят двери.

V.

Ощущается на улице; просыпаются люди, выплескивается из посуды жидкость.

VI.

Ощущается всеми; испуганные люди выбегают на улицу; трескаются штукатурка и кирпичная кладка; сдвигается и переворачивается мебель; лопаются оконные стекла.

VII.

Трудно стоять на ногах; ощущается водителями движущихся автомобилей; осыпается штукатурка, падают кирпичи, керамическая плитка и т.д.; звенят большие колокола; на поверхности водоёмов возникают волны.

VIII.

Трудно вести автомобиль; падает штукатурка, рушатся некоторые кирпичные стены, дымовые трубы, башни, памятники; обламываются ветки деревьев; в сыром грунте образуются трещины.

IX.

Общая паника; лопаются каркасы строений и подземные трубы; образуются значительные трещины в грунте и песчаные воронки.

X.

Рушатся большинство кирпичей кладки, каркасных сооружений и фундаментов; серьезные повреждения плотин и насыпей; рушатся мосты; мощные оползни.

XI.

Серьёзная деформация железнодорожных путей; полностью выходят из строя подземные трубопроводы.

XII.

Практически полное разрушение; нарушение линии горизонта; взлетают в воздух отдельные предметы.

Шкалы интенсивности землетрясений Рихтера

Они используются в сейсмологии, чтобы описать размер землетрясения (т.е. оценки усилия для магнитуды землетрясения в стоимостном выражении). Шкалу создал в 1935 году американский сейсмолог Чарльз Фрэнсис Рихтер (26 четвёртые 1900 – 30, 9 1985). Шкала Рихтера на основе количества энергии в hypocentru землетрясения (очаг землетрясения, которое лежит на глубине до 700 км ниже поверхности). Шкала Рихтера показывает интенсивность движения Земли, измеренный на расстоянии 100 км от эпицентра землетрясения.

Шкала Рихтера логарифмическая. Шкала Рихтера не имеет верхнего предела. Для магнитуды землетрясения верна только величина, характеризующую размер землетрясения.

Шкала интенсивности землетрясений I МА была разработана в 1949 году, в Японии, 8-бальная (имеется бальность- 0, а максимальное значение – 7 баллов)

Шкалы интенсивности землетрясений MSK 12-балльная шкала Медведева-Шпонхойера-Карника (MSK-64). Она была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СНиП II-7-81 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ. В Казахстане в настоящее время используется СНиП РК 2.03-30-2006 «Строительство в сейсмических районах».

Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся.

Сила землетрясения

Краткая характеристика

1

Не ощущается

Отмечается только сейсмическими приборами.

2

Очень слабые толчки

Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя в верхних этажах зданий, и очень чуткими домашними животными.

3 Слабое

Ощущается только внутри некоторых зданий, как сотрясение от грузовика.

4 Интенсивное

Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен. Внутри здания сотрясение ощущает большинство людей.

5

Довольно сильное

Под открытым небом ощущается многими, внутри домов - всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих. Ощущается людьми и вне зданий, качаются тонкие ветки деревьев. Хлопают двери.

6 Сильное

Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются.

7

Очень сильное

Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми.

8 Разрушительное

Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются. Падают фабричные трубы.

9 Опустошительное
10 Уничтожающее

Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов.

11 Катастрофа

Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти полностью разрушаются. Сильное искривление и выпучивание железнодорожных рельсов.

12

Сильная катастрофа

Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Изменяется рельеф. Ни одно сооружение не выдерживает.

error: