Биохимия. Белки

Белки – высокомолекулярные азотсодержащие органические соединения состоящие из остатков аминокислот.

Разнообразие белков безгранично, в природе различают 1012 белков.

Функции белков:

1 структурная – участие в построении всех органоидов.

2 каталитическая – ферменты являются белки.

3 регуляторная – гистоны, регулируют транскрипцию ДНК.

4 механохимическая – обеспечивают движение цитоплазмы и клеточных структур.

5 транспортная – переносят различные вещества как внутрь клетки так и через мембраны.

6 защитная – ферменты, вакуоли и лизосомы расщепляют внутр. вещества.

7 запасная

8 энергетическая – расщепление 1 грамма белка равно 17,6 кДж энергии.

Иногда один и тот же белок выполняет несколько функций, т. к. белки мембран выполняют структурную, ферментативную, иногда транспортную. Содержание белка в растениях ниже чем у животных. В вегетативных органах 5-15% от сухой массы (тимофеевка 5%, клевер 15%). Больше белков в семенах у злаков 20%. У бобовых 25-35%, у сои до 40%.

2 Классификация белков.

Все белки делятся на простые(протеины) – состоящие только из аминокислот и сложные (протеиды) имеют не белковый компонент.

Протеины:

1 гистоны – функционально связаны с нуклеиновыми кислотами, обладают щелочными свойствами.

2 альбумины – в растительных тканях не много (лейкозин – белок зерна пшеницы, водорастворимые белки)

3 глобулины – основная масса белков растения (бобовые -60-90%, у масличных до 60%). Жмых состоит в основном из

глобулинов.

4 проламины – специальные белки злаков, в зерне до 50%. (составляет половину клейковины).

5 глютамины содержатся в семенах злаков (25-40% от общего содержания белка, в рисе до 70%).

Протеиды:

1 липопротеиды в виде простатической группы имеют липидный компонент, входят в состав клеточных мембран;

2 гликопротеиды имеют в составе углеводы и их производные;

3 хромопротеиды имеют окрашенную простатическую группу. К ним относятся белки, цитохромы, фередаксин, пластоцианин, хлорофилл, фитохром. Участвуют в реакциях дыхания и фотосинтеза.

4 Нуклеопротеиды связаны с нуклеиновой кислотой, стабилизируют молекулу ДНК.

3. Аминокислоты. Строение и свойства.

Аминокислоты являются мономерами белков, среди них (170 разновидностей) выделяют: протеиногенные (входят в состав белков) их может быть 26, но обычно 20 и непротеиногенные – не входят в состав белка, но обнаружены в составе других соединений.

Если у аминокислот 1 карбо группа и 1 аминогруппа, то аминокислота нейтральная. Если больше СООН – кислая, если больше NH2 – щелочная.

В водных растениях карбо - и аминогруппы аминокислот диссоциируют. Карбо группа отщепляет протон. Аплон аминокислот в щелочной среде может присоединять катионы. Аминогруппы в водной среде отщепляют гидроксильный ион.

Катионы аминокислот в кислой среде присоединяют аплоны. Наличие одновременно кислых и щелочных свойств обеспечивает двойственную природу аминокислот, поэтому аминокислоты в клетках играют роль буферов, связывающих катионы или анионы меняя их концентрацию. В основе стереохимии лежит пространственное расположение аминогруппы у ассиметричного атома С. Все аминокислоты входящие в состав белков является L - изомерами (хотя вращение плоскости полимеризации у них различные).

4 Аминокислоты в составе растительных белков.

В растительных белках некоторые аминокислоты могут отсутствовать или содержатся в малых количествах.. Некоторые аминокислоты всегда содержатся (аспирогиновая, глутаминовая кислота, их альдегиды), других аминокислоты в растениях всегда мало (лизин, метионин, гистидин, триптофан, цистеин). Многие из них являются незаменимыми аминокислотами. Поэтому растительные белки в отличие от животных не полноценны. Белки картофеля и овощей являются полноценными. Белки бобовых приближаются к таковым, белки сои полностью уравновешенны по аминокислотному составу.

5 Особенности азотного обмена растений.

Все особенности связанны с автотрофностью растения.

1 растения используют для питания и синтеза азотистые соединения, в основном минеральные формы азота (нитратная и аммиачная) и немного способны поглощать органические соединения (аминокислоты, нуклеотиды). Но для усвоения и эти соединения подвергаются расщеплению с выделением аммиака.

2 Очень экономный расход азота. При жизни растения не выделяют азотные соединения и многократно реутилизируют их. Кроме этого когда это возможно растения азотные соединения без азотными.

6 Биосинтез аминокислот.

Происходит:

1 прямое аминирование, ему подвергаются кетокислоты. Главным образом альфа - кетоглутаровая кислота, которая образуется в цикле Кребса. При этом образуется глутаминовая кислота, фермент – глутаматдегидрогеназа.

Коферментами могут быть НАД или НАДФ. Кроме альфа –КГК в ассимиляции NH3 могут принимать участие ЩУК, ПВК и др. аминокислота образовавшаяся прямым аминированием называется первичной.

2 переаминирование (транс). Этим способом образуется большинство аминокислот. Аминогруппа переносится с 1 аминокислоты на кетоновую кислоту с образованием другой аминокислоты.

Реакция катализируется транс амилазами кислоты, которые используются для биосинтеза аминокислот образуются как промежуточные продукты, в основном реакции дыхания.

3 амидирование.

Аспарагиновая и глутаминовая кислоты могут образовывать амиды (аспарагин и глутамин) присоединяет к карбоксильной группе еще 1 молекулу NH 3. реакция идет с затратой АТФ. Катализируется ферментом глутамин синтетазой. Процесс имеет большое значение, т. к. большая часть минерального азота усваивается этим путем. Амиды в дальнейшем легко передают амидную группу на кетокислоты с образованием аминокислот.

7 Образование аминокислот при фотосинтезе.

В процессе фотосинтеза образуется 5 кислот:

Из ФЛК могут образоваться серин и аланин. Из серина путем замещения гидроксильной группы NH группы образуется цистин

С-4 пути образуется ЩУК, которая путем транс амилирования дает аспарагиновую кислоту. В процессе фото-дыхания из глеокселевой кислоты при переамилировании получается глицин.

8 Восстановление нитратов.

Нитраты образуются в почве путем окисления аммиака нитрофильными бактериями. Процесс редукции двуэтапен.

1 восстановление нитрата до нитрита: NO3 ---NO2

Катализируется ферментом нитрат редуктазой, в переносе электронов участвуют коферменты НАД, ФАД и ионы молибдена. Повышенное содержание молибдена в почве увеличивает усвоение азота растениями.

2 восстановление нитрата до аммиака: NO2-NH4

Сопряжено с переносом 6 электронов и катализируется ферментом NO2 – редуктазой, которая содержит FeS - группу.

Оба этапа могут происходить как в корнях так и в листьях(хлоропласты), а в корнях в пропластидах. Большинство древесных растений восстанавливают NO3 в корнях, большинство с. х. – в корнях и листьях (свекла и хлопчатник в листьях).

9 Образование и роль амидов в растении.

Полученный в результате редукции нитратов аммиака очень ядовит и содержится в растениях в очень незначительном количестве, т. к. усваивается с образованием аминокислот и амидов. Ведущая роль связывания аммиака принадлежит реакциям биосинтеза глутаминовой кислоты (глутамат) и ее амида (глутамина).

Т. О. каждая молекула дикарбоновой аминокислоты может связать и обезвредить 1 молекулу аммиака, таким же путем образуется аспарагин и аланин из ПВК. Амиды могут накапливаться в больших количествах, особенно их много образуется при проростании семян бобовых, когда происходит интенсивный гидролиз белков и образуется много NH3 .

Роль амидов

1 участие в обезвреживании аммиака.

2 участие в переаминировании. Отдают аммиачную группу не только для синтеза аминокислот, но и при образовании других соединений (азотистые основания).

3 являются резервом дикарбоновых аминокислот.

4 являются запасной и транспортной формой азота.

Глава III. БЕЛКИ

§ 6. АМИНОКИСЛОТЫ КАК СТРУКТУРНЫЕ ЭЛЕМЕНТЫ БЕЛКОВ

Природные аминокислоты

Аминокислоты в живых организмах встречаются преимущественно в составе белков. Белки построены в основном двадцатью стандартными аминокислотами. Они являются a-аминокислотами и отличаются друг от друга строением боковых групп (радикалов), обозначаемых буквой R:

Разнообразие боковых радикалов аминокислот играет ключевую роль при формировании пространственной структуры белков, при функционировании активного центра ферментов.

Структура стандартных аминокислот приведена в конце параграфа в табл.3. Природные аминокислоты имеют тривиальные названия, оперировать которыми при записях структуры белков неудобно. Поэтому для них введены трехбуквенные и однобуквенные обозначения, которые также представлены в табл.3.

Пространственная изомерия

У всех аминокислот, за исключением глицина, a-углеродный атом является хиральным, т.е. для них характерна оптическая изомерия. В табл. 3 хиральный атом углерода обозначен звездочкой. Например, для аланина проекции Фишера обоих изомеров выглядят следующим образом:

Для их обозначения, как и для углеводов, используется D, L-номенклатура. В состав белков входят только L-аминокислоты.

L- и D-изомеры могут взаимно превращаться друг в друга. Этот процесс называется рацемизацией.

Интересно знать! В белке зубов – дентине – L -аспарагиновая кислота самопроизвольно рацемизуется при температуре человеческого тела со скорость 0,10 % в год. В период формирования зубов в дентине содержится только L -аспарагиновая кислота, у взрослого же человека в результате рацемизации образуется D -аспарагиновая кислота. Чем старше человек, тем выше содержание D-изомера. Определив соотношение D- и L-изомеров, можно достаточно точно установить возраст. Так были изобличены жители горных селений Эквадора, приписывавшие себе слишком большой возраст.

Химические свойства

Аминокислоты содержат амино- и карбоксильную группы. В силу этого они проявляют амфотерные свойства, то есть свойства и кислот и оснований.

При растворении аминокислоты в воде, например, глицина, его карбоксильная группа диссоциирует с образованием иона водорода. Далее ион водорода присоединяется за счет неподеленной пары электронов у атома азота к аминогруппе. Образуется ион, в котором одновременно присутствуют положительный и отрицательный заряды, так называемый цвиттер-ион:

Такая форма аминокислоты является преобладающей в нейтральном растворе. В кислой среде аминокислота, присоединяя ион водорода, образует катион:

В щелочной среде образуется анион:

Таким образом, в зависимости от рН среды аминокислота может быть положительно заряженной, отрицательно заряженной и электронейтральной (при равенстве положительных и отрицательных зарядов). Значение рН раствора, при котором суммарный заряд аминокислоты равен нулю, называется изоэлектрической точкой данной аминокислоты. Для многих аминокислот изоэлектрическая точка лежит вблизи рН 6. Например, изоэлектрические точки глицина и аланина имеют значения 5,97 и 6,02 соответственно.

Две аминокислоты могут реагировать друг с другом, в результате чего отщепляется молекула воды и образуется продукт, который называется дипептидом :

Связь, соединяющая две аминокислоты, носит название пептидной связи . Если пользоваться буквенными обозначениями аминокислот, образование дипептида можно схематически представить следующим образом:

Аналогично образуются трипептиды, тетрапептиды и т.д.:

H 2 N – лиз – ала – гли – СООН – трипептид

H 2 N – трп – гис – ала – ала – СООН – тетрапептид

H 2 N – тир – лиз – гли – ала – лей – гли – трп – СООН – гептапептид

Пептиды, состоящие из небольшого числа аминокислотных остатков, имеют общее название олигопептиды .

Интересно знать! Многие олигопептиды обладают высокой биологической активностью. К ним относится ряд гормонов, например, окситоцин (нанопептид) стимулирует сокращение матки, брадикинин (нанопептид) подавляет воспалительные процессы в тканях. Антибиотик грамицидин С (циклический декапептид) нарушает регуляцию ионной проницаемости в мембранах бактерий и тем самым убивает их. Грибные яды аманитины (октапептиды), блокируя синтез белка, способны вызвать сильное отравление у человека. Широко известен аспартам - метиловый эфир аспартилфенилаланина. Аспартам имеет сладкий вкус и используется для придания сладкого вкуса различным продуктам, напиткам.

Классификация аминокислот

Существует несколько подходов к классификации аминокислот, но наиболее предпочтительной является классификация, основанная на строении их радикалов. Выделяют четыре класса аминокислот, содержащих радикалы следующих типов; 1) неполярные (или гидрофобные); 2) полярные незаряженные; 3) отрицательно заряженные и 4) положительно заряженные:


К неполярным (гидрофобным) относятся аминокислоты с неполярными алифатическими (аланин, валин, лейцин, изолейцин) или ароматическими (фенилаланин и триптофан) R-группами и одна серусодержащая аминокислота – метионин.

Полярные незаряженные аминокислоты в сравнении с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды. К ним относятся аминокислоты, содержащие полярную НО-группу (серин, треонин и тирозин), HS-группу (цистеин), амидную группу (глутамин, аспарагин) и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам. Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин, в ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные . К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

Десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в человеческом организме. Остальные должны содержаться в нашей пище. К ним относятся аргинин, валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин и гистидин. Эти аминокислоты называются незаменимыми. Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Интересно знать! Исключительно важную роль играет сбалансированность питания человека по аминокислотам. При недостатке незаменимых аминокислот в пище организм саморазрушается. При этом страдает в первую очередь головной мозг, что приводит к различным заболеваниям центральной нервной системы, психическим расстройствам. Особенно уязвим молодой растущий организм. Так, например, при нарушении синтеза тирозина из фенилаланина у детей развивается тяжелое заболевание финилпировиноградная олигофрения, вызывающее тяжелую умственную отсталость или гибель ребенка.

Таблица 3

Стандартные аминокислоты

Аминокислота

(тривиальное название)

Условные обозначения

Структурная формула

Латинское

трехбук- венное

однобук-венное

НЕПОЛЯРНЫЕ (ГИДРОФОБНЫЕ)

Изолейцин

Фенилаланин

Триптофан

Метионин

ПОЛЯРНЫЕ НЕЗАРЯЖЕННЫЕ

Аспарагин

Глутамин

Кислотно-основные свойства

1.Амфотерность

Аминокислоты имеют 2 функциональные группы с противоположными свойствами: кислую карбоксильную и основную аминогруппу. Поэтому в водном растворе аминокислоты существуют в виде биполярного иона.

При добавлении в раствор аминокислот дополнительного количества протонов (кислоты) подавляется диссоциация карбоксильных групп и увеличивается количество NH3+-групп. Аминокислоты при этом переходят в катионную форму (приобретают положительный заряд). При добавлении щелочи, наоборот, увеличивается диссоциация карбоксильных групп. Аминокислоты переходят в анионную форму (приобретают отрицательный заряд). Изменяя, таким образом, pH раствора, можно изменять заряд молекул аминокислот.

Нейтральные аминокислоты в воде не имеют заряда. Дикарбоновые аминокислоты имеют две карбоксильные группы, которые диссоциируют, отдавая 2 протона, но поскольку у них только одна аминогруппа, принимающая один протон, то такие аминокислоты ведут себя как кислоты и раствор их имеет кислую реакцию. Сам ион аминокислоты заряжается отрицательно.

Диаминомонокарбоновые аминокислоты реагируют в водном растворе как слабые основания, так как один

протон, который освобождается при диссоциации карбоксильной группы таких аминокислот, связывается с одной из аминогрупп, а вторая аминогруппа связывает протон из водного окружения, в результе увеличивается количество OH– групп и повышается pH. Заряд иона таких аминокислот будет положительным.

Добавляя к раствору аминокислоты определенное количество кислоты или щелочи, можно изменить их заряд. При определенном значении pH наступает такое состояние, при котором заряд аминокислоты становится нейтральным. Такое значение pH получило название изоэлектрической точки (ИЭТ). При значении pH, равном изоэлектрической точке, аминокислоты не перемещаются в электрическом поле. Если pH ниже изоэлектрической точки, катион аминокислоты движется к катоду, а при pH выше ИЭТ анион аминокислоты - к аноду. На этих свойствах аминокислот основана возможность разделения их в электрическом поле (электрофорез). Кислые аминокислоты имеют ИЭТ в слабокислой среде, основные - в слабоосновной, а нейтральные - в нейтральной.

2.Стереоизомерия

Обусловлена наличием у аминокислоты ассиметричного атома углерода (называется хиральный центр).

По абсолютной конфигурации (эталон - глицериновый альдегид).

АК могут быть L- или D-стереоизомеры. В состав белков организма входят L- стереоизомеры аминокислот.

3.Спектральные свойства

Все аминокислоты поглощают свет в инфракрасной области спектра. Три циклических аминокислоты (фенилаланин, тирозин и триптофан) поглощают свет в ультрафиолетовой области при 280 нм.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

«Основы биохимии белков и аминокислот в организме человека»

МИНСК, 2008


Белки – это высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Название протеины (от греческого proteos - первый, важнейший) отражает первостепенное значение этого класса веществ. Белкам принадлежит особая роль в воспроизводстве основных структурных элементов клетки, а также в образовании таких важнейших веществ как ферменты и гормоны.

Наследственная информация сосредоточена в молекуле ДНК клеток любых живых организмов, поэтому с помощью белков реализуется генетическая информация. Без белков и ферментов ДНК не может реплицироваться, самопроизводиться. Таким образом, белки являются основой структуры и функции живых организмов.

Все природные белки состоят из большого числа сравнительно простых структурных блоков – аминокислот, связанных друг с другом в полипептидные цепи. Белки представляют собой полимерные молекулы, в состав которых входит 20 различных АК. Поскольку эти АК могут объединяться в самой различной последовательности, то они могут образовывать громадное количество разнообразных белков и их изомеров.

Белки выполняют множество самых разнообразных функций:

Питательную, резервную. К таким белкам относятся так называемые резервные белки, являющиеся источником питания для развития плода (белок яйца, молоко). Ряд других белков используется в качестве источника АК, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы обмена веществ.

Каталитическую – за счет ферментов, биологических катализаторов.

Структурную – белки входят в состав органов, тканей, оболочек клеток (биомембран). Коллаген, кератин-в волосах и ногтях, эластин- в коже.

Энергетическую – при распаде белков до конечных продуктов образуется энергия. При распаде 1 г белка образуется 4,1 ккал.

Транспортную – белки обеспечивают снабжение тканей кислородом и удаление углекислого газа (гемоглобин), транспорт жирорастворимых витаминов - липопротеиды, липидов - альбумины сыворотки крови.

Белки выполняют функцию передачи наследственности. Нуклеопротеиды - белки, составными частями которых являются РНК и ДНК.

Защитная функция - (антитела, g-глобулин) основную функцию защиты в организме выполняет иммунологическая система, обеспечивающая синтез специфических защитных белков - антител в ответ на поступление в организме бактерий, вирусов, токсинов. Кожа - кератин.

Сократительная функция - в акте мышечного сокращения и расслабления участвуют множество белков.. Главную роль играют актин и миозин - специфические белки мышечной ткани.

Гормональная - регуляторная. Обмен веществ в организме регулируется с помощью гормонов, ряд которых представлен белками или полипептидами (гормоны гипофиза, поджелудочной желез).

Таким образом, белкам принадлежит исключительная и разносторонняя роль в организме человека.

Основная структурная единица белка - мономер-аминокислота. Аминокислоты - органические кислоты, у которых водород у a-углеродного атома замещен на аминогруппу NH 2 . Отдельные аминокислоты связаны друг с другом пептидными (R-CO-NH-R 1) связями, возникающими при взаимодействии карбоксильных СООН и аминных NH 2 групп АК. Пептидная связь - единственная ковалентная связь с помощью которой АК остатки соединяются друг с другом, образуя остов белковой молекулы. Существует еще только один важный тип ковалентной связи между АК в белках - дисульфидный мостик или поперечная связь между двумя отдельными пептидными цепями -S-S-.

Классификация аминокислот:

1. Ациклические АК - моноаминомонокарбоновые, содержат 1 -аминную и 1-карбоксильную группы:

L-глицин, L -аланин, L -серин, L -треонин, L -цистеин, L -метионин, L -валин, L -лейцин.

Моноаминодикарбоновые -содержат 1-аминную и 2 карбоксильные группы:

L-глутаминовая кислота, L-аспарагиновая кислота.

Диаминомонокарбоновые - содержат 2 аминные и 1 карбоксильную группы:

L-лизин и L-аргинин

2. Циклические аминокислоты

Имеют в своем составе ароматическое или гетероциклическое ядро:

фенилаланин, L-тирозин, L-триптофан, L-гистидин

Соединение состоящее из 2 АК – дипептид, состоящее из 3 АК- трипептид

Классификация белков: протеины – простые, состоят только из аминокислот (альбумины, глобулины, протамины, гистоны). При гидролизе распадаются только на АК.

Пример протеинов - альбумин, глобулины, коллаген, протамины, гистоны.

Протамины и гистоны - имеют своеобразный АК состав и представлены белками с небольшой молекулярной массой. В сотаве их 60-80% аргинина, они хорошо растворимы в воде. Скорее всего они являются пептидами, поскольку молекулярная масса не превышает 5000 дальтон. Являются белковым компонентом в структуре нуклеопротеидов.

Проламины и глютеины - белки растительного происхождения. Содержат 20-25% глутаминовой кислоты и 10-15% пролина.

Альбумины и глобулины- наиболее богаты этими белками сыворотка крови, молоко, яичный белок. мышцы. Оба эти класса относятся к глобулярным белкам. Соотношение альбуминов к глобулинам, получившее название белкового коэффициента в норме в крови сохраняется на постоянном уровне. Это соотношение при многих заболеваниях изменяется, поэтому определение его имеет важное практическое значение. Альбумины - 69 дальтон, а глобулины - 150000 дальтон.

Протеиды – сложные белки, состоят из белковой части и простетической группы (небелкового компонента).

Фосфопротеиды - содержат фосфорную кислоту. Липопротеиды – липиды. Гликопротеиды – углеводы. Металлопротеиды - металлы. Нуклеопротеиды содержат в качестве простетической группы нуклеиновые кислоты. Хромопротеиды – пигменты.

Гемопротеиды содержат в качестве простетической группы Fe. Порфирины содержат Mg. Флавопротеиды (содержат производные изоаллоксозина).

Все белки участвуют в фундаментальных процессах жизнедеятельности: фотосинтез, дыхание клеток и целостного организма, транспорт кислорода и углекислоты, окислительно-восстановительные реакции, свето- и цвето- восприятие. Например, хромопротеиды играют исключительно важную роль в процессах жизнедеятельности: достаточно подавить дыхательную функцию Hb путем введения окиси углерода, либо подавить утилизацию кислорода в тканях синильной кислотой или ее солями цианидами, как моментально наступает смерть.

Гемопротеиды - гемоглобин, миоглобин, хлорофиллсодержащие белки и ферменты (вся цитохромная система, каталаза и пероксидаза). Все они содержат в качестве небелкового компонента структурно схожее железо или магний порфирины, но различные по составу и структуре белки, обеспечивая тем самым разнообразие их биологических функций. Гемоглобин содержит в качестве белкового компонента глобин, а небелкового - гем.

Флавопротеиды содержат прочно связанные с белком простетические группы, представленные изоаллоксазиновыми производными ФМН и ФАД. Входят в состав оксидоредуктаз - ферментов, катализирующих окислительно-восстановительные реакции в клетке. Некоторые содержат ионы металлов (ксантиноксидаза, сукцинатдегидрогеназа, альдегидоксидаза).

Нуклеопротеиды - состоят из белков и нуклеиновых кислот, последние рассматриваются как простетические группы.

ДНП-дезоксирибонуклеопротеиды

РНП-рибонуклеопротеиды

Отличаются природой сахара (пентозы), это либо рибоза, либо дезоксирибоза. ДНП содержатся в основном в ядре клетки, а РНП в цитоплазме. ДНП присутствуют в митохондриях, а РНП - ядрах и ядрышках. Природа синтезированных в клетках белков зависит в первую очередь от природы ДНП, точнее ДНК, а свойства живых организмов определяются свойствами синтезированных белков. ДНК хранит наследственную информацию.

Липопротеиды - простетическая группа представлена липидом. В составе липопротеидов открыты нейтральные жиры, свободные жирные кислоты, фосфолипиды, холестериды. Широко распространены в природе (растения, животные ткани, микроорганизмы). Входят в состав клеточной мембраны, внутриклеточных биомембранах ядра, митохондрий, микросом, присутствуют в свободном состоянии в плазме крови. Липопротеиды участвуют в структурной комплексной организации миелиновых оболочек нервов, хлоропластов, палочек и колбочек сетчатки глаза.

Фосфопротеиды - казеиноген молока - в котором содержание фосфорной кислоты 1%. Вителлин, фосфовитин - содержатся в желтке куриного яйца. Овальбумин - в белке куриного яйца, ихтулин- в икре рыб. Много фосфолипидов содержится в ЦНС. Они содержат органически связанный лабильный фосфат и являются источниками энергетического и пластического материала в процессе эмбриогенеза. Также участвуют в процессах метаболизма.

Гликопротеиды- содержат углеводы или их производные прочно связанные с белковой молекулой: глюкоза, манноза, галактоза, ксилоза и т.д. В состав простетических групп входят мукополисахариды. Гиалуроновая и хондроитинсерная кислоты входят в состав соединительных тканей. Белки плазмы крови, за исключением альбуминов. Являясь составной частью клеточной оболочки участвуют в иммунологических реакциях, ионном обмене.

Металлопротеиды- биополимеры, содержащие помимо белка ионы какого-либо одного или нескольких металлов. Типичные представители - железосодержащие - ферритин, трансферрин и гемосидерин. Ферритин содержит 17-23% Fe. Сосредоточен в печени, селезенке, костном мозге, выполняет роль депо железа в организме. Железо в ферритине содержится в окисленной форме. Трансферрин - растворимый в воде железопротеид, содержащийся в основном, в сыворотке крови в составе b-глобулинов. Содержание Fe - 0,13%. Служит физиологическим переносчиком железа. Гемосидерин-водорастворимый железосодержащий компонент, состоящий на 25% из нуклеотидов и углеводов. Содержится в ретикулоэндотелиальных клетках печени и селезенки. Биологическая роль изучена недостаточно.

Вторая группа - ферменты. для которых металл служит мостиком между белковым компонентом и субстратом и непосредственно выполняет каталитическую функцию.

Природные пептиды. Низкомолекулярные пептиды, естественно встречающиеся в организме и обладающие специфическими функциями. Разделяются:

1. Пептиды, обладающие гормональной активностью (вазопрессин, окситоцин, адренокортикотропный гормон)

2. Пептиды, принимающие участие в пищеварении (гастрин, секретин)

3. Имеющие своим источником a 2 -глобулярную фракцию крови (ангиотензин, брадикинин, калидин).

4. Нейропептиды.

Структура белка:

Каждый белок имеет в своем составе известное количество аминокислот, соединенных между собой в строго зафиксированной последовательности с помощью пептидных связей. Эта уникальная, специфичная для каждого белка последовательность АК определена как первичная структура белка.

Установлено, что полипепептидная цепь находится в молекуле белков в закрученном состоянии в виде альфа-спирали. Спирализация обеспечивается водородными связями, которые возникают между остатками карбоксильных и аминных групп, расположенных на противоположных витках спирали. Это- вторичная структура белка.

Пространственная упаковка альфа-спирали определяется как третичная структура белка. Основным видом связи, удерживающим спирали в определенном положении, является дисульфидная связь, которая возникает между двумя молекулами цистеина на разных участках спирали. Третичную структуру белка также стабилизируют различные ковалентные связи, силы Ван-дер-Ваальса. В зависимости от пространственного расположения полипептидных цепей (третичной структуры) молекулы белка могут иметь различную форму. Если полипептиды уложены в виде клубка, то такие белки называются глобулярными. Если в виде нитей – фибриллярными.

Четвертичная структура белка – это несколько индивидуальных полипептидных цепей, определенным образом связаны друг с другом (например, гемоглобин). Термином субъединица принято обозначать функционально активную часть молекулы белка. Многие ферменты состоят из двух или четырех субъединиц. Благодаря различным сочетаниям субъединиц фермент существует в нескольких формах – изоферментах.

Все белки обладают гидрофильными свойствами, т.е. имеют большое сродство к воде. Устойчивость белковой молекулы в растворе обусловлена наличием определенного заряда и водной (гидратной) оболочки. В случае удаления этих двух факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым. Обратимое осаждение белков (высаливание) - белок выпадает в осадок под действием определенных веществ. после удаления которых вновь может возвращаться в свое исходное нативное (природное) состояние. Необратимое осаждение характеризуется значительными внутримолекулярными изменениями структуры белка, что приводит к потере им нативных свойств. такой белок - денатурированный, процесс - денатурация.

Таким образом, под денатурацией следует понимать изменение уникальной структуры нативной молекулы белка, приводящее к потере характерных для нее свойств (растворимости, электрофоретической подвижности, биологической активности).

Большая часть белковых молекул сохраняет свою биологическую активность только в пределах очень узкой области, температуры, рН В нормальных условиях температуры и рН полипептидная цепь белка обладает только одной конформацией, которая носит название нативной. Стабильность ее высока, что позволяет выделить и сохранить белок. Большинство белков можно полностью осадить из водного раствора при добавлении трихлоруксусной и хлорной кислоты, которые образуют с белками кислотонерастворимые соли. Белки можно осадить и с помощью катионов (Zn 2+ или Pb 2+).

При денатурации свойственная белкам биологическая активность утрачивается. Поскольку известно, что при денатурации не происходит разрыва ковалентных связей пептидного остова белка, был сделан вывод, что причиной денатурации является развертывание полипептидной цепи, которая в нативной белковой молекуле характерным образом свернута. В денатурированном состоянии полипептидные цепи образуют случайные и беспорядочные петли и клубки. Ренатурация денатурированного белка – процесс не требующий химической энергии извне, этот процесс происходит самопроизвольно при значении рН и t, обеспечивающих стабильность нативной формы.

Аминокислоты отличаются друг от друга химической природой радикала (R). Почти все a-амино- и a-карбоксильныые группы участвуют в образовании пептидных связей белковой молекулы.

Рациональная классификация АК основана на полярности радикалов, выделяют 4 класса АК:

1. неполярные или гидрофобные

2. полярные (гидрофильные) незаряженные

3. отрицательно заряженные

4. положительно заряженные

Общие свойства аминокислот:

Аминокислоты легко растворимы в воде. Они кристаллизуются из нейтральных водных растворов. Будучи растворенными в воде они способны вращать плоскость поляризованного луча. Около половины АК правовращающие (+), а половина– левовращающие(-).

Стереохимию АК оценивают исходя из абсолютной конфигурации всех четырех замещающих групп, расположенных вокруг асимметрического атома углерода. Существуют L и D – стереоизомеры.

Основные физико-химические свойства АК:

Высокая вязкость растворов, незначительная диффузия, способность к набуханию в небольших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление, поглощение в УФ области при 280 нм.

Число различных типов белков у всех видов живых организмов составляет величину порядка 10 10 -10 12 . Аминокислот всего 20. Число сочетаний огромно.

Например дипептид АВ и ВА. Для трипептида – 6 сочетаний, четырехпептида – 24.

Стереоизомерия АК. Аминокислоты могут существовать в различных стереоизомерных формах – они отличаются друг от друга различной пространственной ориентацией групп, присоединенных к a-углеродному атому.

L и D стереоизомеры – это два несовместимых при наложении зеркальных отображения – энактомеры. В состав белков входят только L-АК.

Взаимопревращение L ® D процесс рацимеризации.

Равновесие смещено к L –в живых и к D после смерти организма.

Полипептидные цепи могут содержать сотни АК звеньев, причем белковая молекула может состоять либо из одной, либо из нескольких полипептидных цепей. Однако белковые молекулы – это не беспорядочно построенные полимеры различной длины, каждый тип белка обладает особым, свойственным только ему химическим составом, определенным молекулярным весом и специфической последовательностью АК остатков.

Белковая молекула любого типа в нативном состоянии обладает характерной для нее пространственной структурой, конформацией, в зависимости от нее белки разделяются на фибриллярные и глобулярные.

Помимо 20 обычных имеются несколько редких АК - они являются производными от обычных АК. Эти АК входят в состав белков, но отличаются от обычных АК в генетическом смысле, т.к. для них не существует кодирующих триплетов. Они возникают путем модификации исходных АК уже после того как эти АК-предшественники включатся в полипептидную цепь. Существуют еще свыше 150 АК, которые встречаются в различных клетках и тканях либо в связанном состоянии, но никогда не встречаются в составе белков. Некоторые из них играют роль предшественников продуктов метаболизма. Аминокислоты, встречающиеся в грибах и высших растениях отличаются исключительным разнообразием и необычной структурой. Роль их в обмене веществ неизвестна, некоторые из них токсичны для других форм жизни.

Высшие позвоночные животные способны синтезировать далеко не все АК. Высшие животные для синтеза заменимых аминокислот могут использовать аммонийные соединения N, но не нитриты, нитраты или N 2 . Жвачные животные могут использовать нитриты и нитраты, которые восстанавливаются до аммиака бактериями рубца. Высшие растения способны сами создавать все АК, необходимые для синтеза белка, используя и аммиак и нитраты. Бобовые растения фиксируют молекулярный азот атмосферы, превращая его в аммиак и синтезируя далее АК. Грибы и бактерии также используют нитриты и нитраты.

Существует множество химических реакций, характерных для a-амино- и a-карбоксильных групп АК.


ЛИТЕРАТУРА

1. Мецлер Д. Биохимия. Т. 1, 2, 3. “Мир 2000

2. Ленинджер Д. Основы биохимии. Т.1, 2, 3. “Мир” 2002

3. Фримель Г. Иммунологические методы. М. “Медицина 2007

4. Медицинская электронная аппаратура для здравоохранения. М 2001

5. Резников А.Г. Методы определения гормонов. Киев “Наукова думка 2000

6. Бредикис Ю.Ю. Очерки клинической электроники. М. “Медицина 1999



Гензеляйт в 1932 г. вывели уравнения реакций синтеза мочевины, которые представлены в виде цикла, получившего в литературе название орнитинового цикла мочевинообразования Кребса. Следует указать, что в биохимии это была первая циклическая система метаболизма, описание которой почти на 5 лет опеределило открытие Г. Кребсом другого метаболического процесса – цикла трикарбоновых кислот. Дальнейшие...

Щелочная ср. NH2 R R R COOH COO – COO – Катион Амфион Анион Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако...

Которая обеспечивается печенью. Таким образом здоровый организм находится в равновесии с окружающей средой. Транспортные системы в организме человека. Метаболические процессы, протекающие во всех клетках тела, требуют непрерывного притока питательных веществ и кислорода и непрерывного удаления продуктов обмена. У некоторых видов животных транспортная система, кроме того, служит для переноса...

СТРОЕНИЕ, СВОЙСТВА И КЛАССИФИКАЦИЯ АМИНОКИСЛОТ И БЕЛКОВ

Аминокислоты по строению они являются органическими карбоновыми кислотами, у которых, как минимум, один атом водорода замещен на аминогруппу. Они являются строительными блоками белковых молекул, но необходимость их изучения кроется не только в данной функции.

Несколько из аминокислот являются источником для образования нейромедиаторов в ЦНС (гистамин, серотонин, гамма-аминомасляная кислота, дофамин, норадреналин), другие сами являются нейромедиаторами (глицин, глутаминовая кислота).

Те или иные группы аминокислот необходимы для синтеза пуриновых ипиримидиновых оснований без которых нет нуклеиновых кислот, используются для синтеза низкомолекулярных биологически важных соединений (креатин, карнитин, карнозин, ансерин и др.).

Аминокислота тирозин целиком входит в состав гормонов щитовидной железы и мозгового веществанадпочечников .

С нарушением обмена аминокислот связан ряд наследственных и приобретенных заболеваний , сопровождающихся серьезными проблемами в развитии организма (цистиноз, гомоцистеинемия, лейциноз, тирозинемии и др). Самым известным примером является фенилкетонурия.

КЛАССИФИКАЦИЯ АМИНОКИСЛОТ

Из-за разнообразного строения и свойств классификация аминокислот может быть различной, в зависимости от выбранного качества аминокислот. Аминокислоты делятся:

1. В зависимости от положения аминогруппы.

2. По абсолютной конфигурации молекулы.

3. По оптической активности.

4. По участию аминокислот в синтезе белков.

5. По строению бокового радикала.

6. По кислотно-основным свойствам.

7. По необходимости для организма.

По абсолютной конфигурации молекулы

По абсолютной конфигурации молекулы выделяют D- и L-формы. Различия между изомерами связаны с взаимным расположением четырех замещающих групп, находящихся в вершинах воображаемого тетраэдра, центром которого является атом углерода в α -положении.

В белке любого организма содержится только один изомер, для млекопитающих это L-аминокислоты. Однако оптические изомеры претерпевают самопроизвольную неферментативнуюрацемизацию , т.е. L-форма переходит в D-форму. Это обстоятельство используется для определения возраста, например, костной ткани зуба (в криминалистике, археологии).

В зависимости от положения аминогруппы

Выделяют α, β, γ и другие аминокислоты. Для организма млекопитающих наиболее характерны α -аминокислоты.

По оптической активности

По оптической активности аминокислоты делятся на право- и левовращающие.

Наличие ассиметричного атома углерода (хирального центра) делает возможным только два расположения химических групп вокруг него. Это приводит к особому отличию веществ друг от друга, а именно – изменению направления вращения плоскости поляризации поляризованного света, проходящего через раствор. Величину угла поворота определяют при помощи поляриметра. В

соответствии с углом поворота выделяют правовращающие (+) и левовращающие (–) изомеры.

Деление на L- и D-формы не соответствует делению на право- и левовращающие. Для одних аминокислот L-формы (или D-формы) являются правовращающими, для других – левовращающими. Например, L-аланин – правовращающий, а L-фенилаланин – левовращающий. При смешивании L- и D-форм одной аминокислоты образуется рацемическая смесь, не обладающая оптической активностью.

По участию аминокислот в синтезе белков

Выделяют протеиногенные (20 АК) и непротеиногенные (около 40 АК). Все протеиногенные аминокислоты являются α -аминокислотами.

На примере протеиногенных аминокислот можно показать дополнительные способы классификации:

o по строению бокового радикала – неполярные (алифатические, ароматические) и полярные (незаряженные, отрицательно и положительно заряженные),

o электрохимическая – по кислотно-основным свойствам подразделяют нейтральные (большинство), кислые (Асп, Глу) и основные (Лиз, Арг, Гис) аминокислоты,

o физиологическая классификация – по необходимости для организма выделяют незаменимые (Лей, Иле, Вал, Фен, Три, Тре, Лиз, Мет) и заменимые. Две аминокислоты являются условно незаменимыми (Арг, Гис), т.е.их синтез происходит в недостаточном количестве.

error: