Принципы классификации микроорганизмов. Основные группы микроорганизмов

Определение их патогенности. Например, вероятность развития заболевания при обнаружении в крови Staphylococcus aureus намного выше, чем при наличии Staphylococcus epidermidis. Некоторые бактерии (например, Corynebacterium diphtheriae и Vibrio cholerae) вызывают серьёзные заболевания и обладают способностью к эпидемическому распространению. В основе методов идентификации бактерий лежат их физико-иммунологические или молекулярные свойства.

Окраска по Граму : чувствительность грамположительных и грамотрицательных к действию антибиотиков различается. Для идентификации некоторых других микроорганизмов (например, микобактерий) необходимы иные методы окраски.

Классификация бактерий по окраске по Граму

Форма : кокки, палочки или спирали.

Эндоспоры , их наличие и расположение в бактериальной клетке (терминальные, субтерминальные или центральные).

Отношение к кислороду : для существования аэробных микроорганизмов необходим кислород, в то время как анаэробные бактерии способны выживать в среде с малым его содержанием или полным отсутствием. Факультативные анаэробы могут жить как в присутствии кислорода, так и без него. Микроаэрофилы быстро размножаются при низком парциальном давлении кислорода, а капнофилы - в среде с высоким содержанием СО2.

Требовательность : для роста некоторых бактерий необходимы особые условия культивирования.

Классификация бактерий по отношению к кислороду

Эссенциальные ферменты (ферментативная активность): например, недостаток лактозы в среде указывает на присутствие сальмонелл, а уреазный тест помогает определить Helicobacter.

Серологические реакции возникают при взаимодействии антител с поверхностными структурами бактерий (некоторые виды сальмонелл, Haemophilus, менингококки и др.).

Последовательность оснований в ДНК : ключевой элемент классификации бактерий - 168-рибосомная ДНК. Несмотря на универсальность вышеперечисленных параметров, следует помнить, что они в определённой мере относительны и на практике иногда обнаруживают их значительную вариабельность (например, внутривидовые различия, межвидовое сходство). Так, некоторые штаммы Е. coli иногда вызывают заболевания, по клинической картине схожие с инфекциями, обусловленными Shigella sonnei; а клиническая картина заболеваний, вызванных токсигенными штаммами С. diphtheriae, отличается от таковой при инфекциях, вызванных нетоксигенными формами.


Значимвые в медицине виды бактерий

Грамположительные кокки :
- стафилококки (каталазоположительные): Staphylococcus aureus и др.;
- стрептококки (каталазоотрицательные): Streptococcus pyogenes, вызывающий ангину, фарингит и ревматическую лихорадку; Streptococcus agalactiae, вызывающий менингит и пневмонию у новорождённых.

Грамотрицательные кокки : Neisseria meningitidis (возбудитель менингита и септицемии) и N. Gonorrhoeae [возбудитель уретрита (гонореи)].

Грамотрицательные коккобациллы : возбудители респираторных заболеваний (род Haemophilus и Bordetella), а также зоонозов (рода Brucella и Pasteurella).

Грамположительные бациллы разделяют на спорообразующие и неспорообразующие бактерии. Спорообразующие бактерии подразделяют на аэробные (род Bacillus, например, Bacillus anthracis, вызывающая сибирскую язву) и анаэробные (Clostridium spp., с ними связаны такие заболевания, как газовая гангрена, псевдомембранозный колит и ботулизм). Неспорообразующие бактерии включают роды Listeria и Corynebacterium.

Грамотрицательные палочки : факультативные анаэробы семейства энтеробактерий (условно-патогенные представители нормальной микрофлоры человека и животных, а также микроорганизмы, часто встречающиеся в окружающей среде). Наиболее известные представители группы - бактерии родов Salmonella, Shigella, Escherichia, Proteus и Yersinia. В последнее время в качестве возбудителей внутрибольничных инфекций всё чаще выступают антибиотикорезистентные штаммы рода Pseudomonas (сапрофиты, широко распространённые в окружающей среде). При определённых условиях патогенной для человека может стать Legionella, обитающая в водной среде.

Спиралевидные бактерии :
- мелкие микроорганизмы рода Helicobacter, поражающие желудочно-кишечный тракт человека и вызывающие гастрит, язвенную болезнь желудка и двенадцатиперстной кишки (в некоторых случаях - рак желудка);
- возбудители острой диареи;
- бактерии рода Borrelia, вызывающие эпидемический возвратный тиф (В. duttoni, B. recurrentis); хронические заболевания кожи, суставов и ЦНС; лаймскую болезнь (В. burgdorferi);
- микроорганизмы рода Leptospira, относящиеся к зоонозам, вызывающие острый менингит, сопровождающийся гепатитом и почечной недостаточностью;
- род Treponema (возбудитель сифилиса Т. pallidum).

Rickettsia, Chlamydia и Mycoplasma . Использование искусственных питательных сред возможно только для выращивания бактерий рода Mycoplasma , в то время как для выделения микроорганизмов родов Rickettsia и Chlamydia необходимо использовать культуру клеток или специальные молекулярные и серологические методы.

Бактерии это одноклеточные организмы, лишенные хлорофилла.

Бактерии встречаются повсеместно, населяя все среды обитания. Наибольшее количество их находится в почве на глубине до 3 км (до 3 миллиардов в одном грамме почвы). Их много в воздухе (на высоте до 12 км), в организмах животных и растений (как живых, так и мертвых), не является исключением и организм человека.

Среди бактерий встречаются неподвижные и подвижные формы. Передви-гаются бактерии с помощью одного или нескольких жгути-ков, которые располагаются на всей поверхности тела или на определенном участке.

Клетки бактерий разнообразны по форме:

  • шаровидные - кокки,
  • палочковидные - ба-циллы,
  • в форме запятой - вибрионы,
  • извитые - спириллы.

Кокки :

Монококки: это отдельно расположенные клетки.

Диплококки: это парные кокки, после деления могут образовывать пары.

Гонококк Нейссера: возбудитель гонореи

Пневмококки: возбудитель крупозной пневмонии

Менингококки: возбудитель менингита (острое воспаление мозговых оболочек)

Стрептококки: это клетки округлой формы, которые после деления образуют цепочки.

α - зеленящие стрептококки

β - гемолитические стрептококки возбудители скарлатины, ангины, фарингита…

γ - не гемолитические стрептококки

Стафилококки: это группа микроорганизмов, которая не разошлась после деления, образует огромные беспорядочные грозди.

Возбудитель: гнойничковых заболеваний, сепсиса, фурункулов, абсцессов, флегмон, мастита, пиодермита и пневмонию у новорожденных.

Сарцины: это скопление кокков в группы в виде пакетиков по 8 и более кокков.

Палочковидные:

Это бактерии цилиндрической формы, похожие на палочки размером 1-5×0,5-1 мкм, чаще располагаются одиночно.

Собственно бактерии: это палочковидные бактерии, которые не образуют споры.

Бациллы: это палочковидные бактерии, которые образуют споры.

(бацилла Коха, кишечная палочка, возбудитель сибирской язвы, синегнойная палочка, возбудитель чумы, возбудитель коклюша, возбудитель мягкого шанкра, возбудитель столбняка, возбудитель ботулизма, возбудитель…)

Вибрионы:

Это слабо изогнутые клетки, напоминающие по форме запятые размером 1-3 мкм.

Холерный вибрион: возбудитель холеры. Обитает в воде, через которую происходит заражение.

Спириллы:

Это извитые микроорганизмы в виде спирали, с одни, двумя и более спиралевидными кольцами.

Безвредные бактерии, живущие в сточных водах и запруженных водоемах.

Спирохеты:

Это тонкие длинные топоровидные бактерии, представлены тремя видами: Трепонемы, Боррелия, Лертоспира. Для человека патогенна бледная трепонема - возбудитель сифилива передается половым путем.

Строение бактериальной клетки:

Структура бактериальной клетки хорошо изучена с помощью электронной микроскопии. Бактериальная клетка состоит из оболочки, наружный слой которой называется клеточная стенка, а внутренний - цитоплазматическая мембрана, а также цитоплазмы с включениями и нуклеотидами. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили, плазмиды;

Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму, и «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она защищает клетку от дейст-вия вредных факторов внешней среды.

Наружная мембрана представлена липополисахаридами, фосфолипидами и белками. С ее внешней стороны расположен липо-полисахарид.

Между клеточной стенкой и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты.

Цитоплазматическая мембрана прилегает к внутренней по-верхности клеточной стенки бактерий и окружает наружную часть цитоплазмы бактерий. Она состоит из двойного слоя липидов, а также интегральных белков, пронизывающих ее насквозь.

Цитоплазма занимает основной объем бактериальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответст-венных за синтез белков. В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, жирных ки-слот и полифосфатов.

Нуклеотид - эквивалент ядра у бактерий. Он расположен в цито-плазме бактерий в виде двух нитчатой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Обычно в бактериальной клетке содер-жится одна хромосома, представленная замкнутой в кольцо мо-лекулой ДНК.

Кроме нуклеотида в бактериальной клетке могут находиться внехромосомные факторы наследственности - плазмиды, пред-ставляющие собой ковалентно замкнутые кольца ДНК и способ-ные к репликации независимо от бактериальной хромосомы.

Капсула - слизистая структура, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние грани-цы. Обычно капсула состоит из полисахаридов, иногда из поли-пептидов,

Многие бактерии содержат микрокапсулу - слизистое образова-ние, выявляемое лишь при электронной микроскопии.

Жгутики бактерий определяют подвижность клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, они прикреплены к цитоплазматической мембране и клеточной стенке специальными дисками, имеют большую длину, они состоят из белка - флагеллина, закрученного в виде спирали. Жгутики выяв-ляют с помощью электронного микроскопа.

Споры - своеобразная форма покоящихся грамположительных бактерий, образующихся во внешней среде при неблагопри-ятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.).

L-формы бактерий .

У многих бактерий при частичном или полном разрушении клеточных стенок образуются L-формы. У некоторых они возникают спонтанно. Обра-зование L-форм происходит под действием пенициллина, который нарушает синтез мукопептидов клеточной стен-ки. По морфологии L-формы разных видов бактерий сходны между собой. Они представляют шаровидные, образования различной величины: от 1-8 мкм до 250 нм, они способных, как и вирусы, прохо-дить через поры фарфоровых фильтров. Однако в отли-чие от вирусов L-формы можно выращивать на искусст-венных питательных средах, добавляя к ним пенициллин, сахара, лошадиную сыворотку. При удалении из пита-тельной среды пенициллина L-формы вновь превращают-ся в исходные формы бактерий.

В настоящее время получены L-формы протея, кишечной палочки, холерного вибриона, бруцелл, возбудителей газовой гангрены и столбняка и других микроорганизмов.

Грамположительные микроорганизмы (гр + м/о).

К ним относят : золотистый и эпидермальный стафилококк и стрептококк...

Место обитания : верхние дыхательные пути и кожа.

Резервуар : кожа, воздух, предметы ухода, мебель, постельные принадлежности, одежду.

При высушивании не погибают.

Размножение: вне человека не размножаются, но способны к размножению в продуктах питания при не правильном хранении.

Грамотрицательные микроорганизмы (гр - м /о).

К ним относят : кишечная палочка, клебсиелла, цитробактер, протей, синегнойная палочка...

Место обитания : кишечник, слизистая мочевыводящих и дыхательных путей…

Резервуар : влажная ветошь, щетки для мытья посуды, дыхательная аппаратура, влажные поверхности, лекарственные и слабые дез. растворы.

При высушивании погибают.

Размножение: накапливаются во внешней среде, в дез. растворах с заниженной концентрацией.

Передаются : воздушно-капельным и контактно-бытовым путем.

Микроорганизмами (микробами) называют одноклеточные организмы размером менее 0,1 мм, которые невозможно увидеть невооруженным глазом. К ним относятся бактерии, микроводоросли, некоторые низшие мицелиальные грибы, дрожжи, простейшие (рис. 1). Их изучением занимается микробиология.

Рис. 1. Объекты микробиологии.

На рис. 2. можно увидеть некоторых представителей одноклеточных простейших. Иногда к объектам данной науки относят самые примитивные организмы на Земле — вирусы, не имеющие клеточную структуру и представляющие собой комплексы из нуклеиновых кислот (генетического материала) и белка. Чаще их выделяют в совершенно отдельную область исследования (Вирусологию), так как микробиология скорее направлена на изучение микроскопических одноклеточных.

Рис. 2. Отдельные представители одноклеточных эукариот (простейших).

Такие науки, как альгология и микология, изучающие водоросли и грибы, соответственно, являются отдельными дисциплинами, перекрывающимися с микробиологией в случае исследования микроскопических живых объектов. Бактериология является истинным разделом микробиологии. Данная наука занимается изучением исключительно прокариотных микроорганизмов (рис. 3).

Рис. 3. Схема прокариотической клетки.

В отличие от эукариот, к которым относятся все многоклеточные организмы, а также простейшие, микроскопические водоросли и грибы, у прокариот отсутствует оформленное ядро, содержащее генетический материал и настоящие органоиды (постоянные специализированные структуры клетки) .

К прокариотам относятся истинные бактерии и археи, по современной классификации обозначенные, как домены (надцарства) Archaea и Eubacteria (рис. 4).

Рис. 4. Домены современной биологической классификации.

Особенности строения бактерий

Бактерии являются важным звеном в круговороте веществ в природе, разлагают растительные и животные остатки, очищают загрязненные органикой водоемы, модифицируют неорганические соединения. Без них не могла бы существовать жизнь на земле. Данные микроорганизмы распространены везде, в почве, воде, воздухе, организмах животных и растений.

Бактерии различаются по следующим морфологическим особенностям:

  1. Форма клеток (округлые, палочковидные, нитчатые, извитые, спиралевидные, а также различные переходные варианты и звездообразная конфигурация).
  2. Наличие приспособлений для движения (неподвижные, жгутиковые, за счет выделения слизи).
  3. Сочленение клеток друг с другом (изолированные, сцепленные в виде пар, гранул, ветвящиеся формы).

Среди структур, образуемых округлыми бактериями (кокками) выделяют клетки, находящиеся в паре после деления и затем распадающиеся на одиночные образования (микрококки) или остающиеся все время вместе (диплококки). Квадратичную структуру из четырех клеток образуют тетракокки, цепочку – стрептококки, гранулу из 8-64 единиц – сарцины, грозди – стафилококки.

Палочковидные бактерии представлены многообразием форм вследствие большой изменчивости длинны (0,1-15 мкм) и толщины (0,1-2 мкм) клетки. Форма последних также зависит от способности бактерий к образованию спор – структур с толстой оболочкой, позволяющей переживать микроорганизмам неблагоприятные условия. Клетки с такой способностью называет бациллами, а не обладающие такими свойствами просто палочковидными бактериями.

Особыми видоизменениями палочковидных бактерий являются нитчатые (вытянутые) формы, цепочки и ветвящиеся структуры. Последнюю образуют актиномицеты на определенной стадии развития. «Кривые» палочки называют извитыми бактериями, среди которых выделяют вибрионы; спириллы, имеющие два изгиба (15-20 мкм); спирохеты, напоминающие волнистые линии. Их длины клеток 1-3, 15-20 и 20-30 мкм, соответственно. На рис. 5 и 6 представлены основные морфологические формы бактерий, а также типы расположения споры в клетке.

Рис. 5. Основные формы бактерий.

Рис. 6. Бактерии по типу расположения споры в клетке. 1, 4 – в центре; 2, 3, 5 – концевое расположение; 6 – с боку.

Основные клеточные структуры бактерий: нуклеоид (генетический материал), предназначенные для синтеза белка рибосомы, цитоплазматическая мембрана (часть оболочки клетки), которая у многих представителей дополнительно сверху защищена , капсулой и слизистым чехлом (рис. 7).

Рис. 7. Схема бактериальной клетки.

По классификации бактерий выделяют более 20 типов. Например, экстремально термофильные (любители высоких температур) Aquificae, анаэробные палочковидные бактерии Bacteroidetes. Однако наиболее доминантным типом, включающим в себя многообразных представителей, является Actinobacteria. К нему относятся бифидобактерии, лактобациллы, актиномицеты. Уникальность последних заключается в способности формировать мицелий на определенной стадии развития.

В простонародье это называется грибница. Действительно, разветвления клеток актиномицет напоминают гифы грибов. Несмотря на такую особенность, актиномицеты относят к бактериям, так как они являются прокариотами. Естественно их клетки по особенностям структуры менее сходны с грибами.

Актиномицеты (рис. 8) являются медленно растущими бактериями, поэтому не имеют возможности конкурировать за легкодоступные субстраты. Они способны разлагать вещества, которые другие микроорганизмы не могут использовать в качестве источника углерода, в частности углеводороды нефти. Поэтому актиномицеты интенсивно исследуются в области биотехнологии.

Некоторые представители концентрируется в зонах нефтяных месторождений, и создают специальный бактериальный фильтр, препятствующий проникновению углеводородов в атмосферу. Актиномицеты являются активными продуцентами практически ценных соединений: витаминов, жирных кислот, антибиотиков.

Рис. 8. Представитель актиномицет Nocardia.

Грибы в микробиологии

Объектом микробиологии являются только низшие плесневые грибы (ризопус, мукор, в частности). Как все грибы они не способны синтезировать вещества сами и нуждаются в питательной среде. Мицелий у низших представителей данного царства примитивен, не разделен перегородками. Особую нишу в микробиологических исследованиях занимают дрожжи (рис. 9), отличающиеся отсутствием мицелия.

Рис. 9. Формы колоний дрожжевых культур на питательной среде.

В настоящее время об их полезных свойствах собраны многочисленные знания. Однако дрожжи продолжают исследоваться на способность синтезировать практически ценные органические соединения и активно применяются в качестве модельных организмов при проведении генетических экспериментов. С древних времен дрожжи использовались в бродильных процессах. Метаболизм у разных представителей отличается. Поэтому для какого-то конкретного процесса одни дрожжи больше подходят, чем другие.

Например, Saccharomyces beticus, более устойчивые к высоким концентрациям спирта, используются для создания крепких вин (до 24%). В то время как, дрожжи S. cerevisiae способны вырабатывать более низкие концентрации этанола. По направлениям их применения дрожжи классифицируются на кормовые, пекарские, пивные, спиртовые, винные.

Болезнетворные микроорганизмы

Болезнетворные или патогенные микроорганизмы встречаются повсеместно. Наряду с широко известными вирусами: гриппом, гепатитом, корью, ВИЧ и прочее опасными микроорганизмами являются риккетсии, а также стрепто- и стафилококки, вызывающие заражение крови. Среди палочковидных бактерий много возбудителей заболеваний. Например, дифтерия, туберкулез, брюшной тиф, (рис. 10). Немало опасных для человека представителей микроорганизмов встречается среди простейших, в частности малярийный плазмодий, токсоплазма, лейшмания, лямблия, трихомонада, патогенные амебы.

Рис. 10. Фотография бактерии Bacillus anthracis, вызывающей сибирскую язву.

Многие актиномицеты не опасны для человека и животных. Однако немало патогенных представителей встречается среди микобактерий, вызывающих туберкулез, проказу (лепру). Некоторые актиномицеты инициируют такое заболевание, как актиномикоз, сопровождающийся образованием гранулем, иногда повышением температуры тела. Отдельные виды плесневых грибов способны вырабатывать токсические для человека вещества – микотоксины. Например, некоторые представители рода Aspergillus, Fusarium. Патогенные грибы вызывают группу заболеваний, называемых микозами. Так, кандидоз или, попросту говоря, молочницу вызывают дрожжеподобные грибы (рис. 11). Они всегда содержаться в организме человека, но активизируются только при ослаблении иммунитета.

Рис. 11. Гриб Candida – возбудитель молочницы.

Грибы могут вызывать разнообразные поражения кожи, в частности всевозможные виды лишая, кроме опоясывающего (герпеса), который вызывается вирусом. Дрожжи Malassezia – постоянные обитатели кожи человека при спаде активности иммунной системы могут вызвать . Не стоит сразу бежать мыть руки. Дрожжи и условно патогенные бактерии при хорошем здоровье выполняют важную функцию, препятствуют развитию болезнетворных микроорганизмов.

Вирусы как объект микробиологии

Вирусы – самые примитивные организмы на земле. В свободном состоянии в них не происходят никакие обменные процессы. Только при попадании в клетку-хозяина вирусы начинают размножаться. У всех живых организмов носителем генетического материала является дезоксирибонуклеиновая кислота (ДНК). Только среди вирусов встречаются представители с генетической последовательностью типа рибонуклеиновой кислоты (РНК).

Часто вирусы не относят к истинно живым организмам.

Морфология вирусов очень разнообразна (рис. 12). Обычно их диаметральные размеры колеблются в пределах 20-300 нм.

Рис. 12. Разнообразие вирусных частиц.

Отдельные представители достигают в длину 1-1,5 мкм. Структура вируса заключается в окружении генетического материала специальным белковым каркасом (капсидом), отличающимся разнообразием форм (спиральный, икосаэдрический, шарообразный). Некоторые вирусы сверху имеют еще оболочку, сформированную из мембраны клетки-хозяина (суперкапсид). Например, (рис. 13) известен как возбудитель заболевания, которое носит название (СПИД). Он содержит в качестве генетического материала РНК, поражает определенный тип клеток иммунной системы (т-лимфоциты хелперы).

Рис. 13. Строение вируса иммунодефицита человека.

Питание бактерий.

Питание.

Пассивная диффузия

Облегчённая диффузия

Активный транспорт

В первом случае молекула питательного вещества образует комплекс с белком периплазматического пространства, который взаимодействует со специфической пермеазой цитоплазматической мембраны. После энергозависимого проникновения через цитоплазматическую мембрану комплекс «субстрат – белок периплазмы – пермеаза» диссоциирует с освобождением молекулы субстрата.

При активном транспорте с химической модификацией переносимого вещества цепь событий включает: (1) фосфорилирование мембранного фермента-2 со стороны цитоплазмы фосфоенолпируватом; (2) связывание на поверхности цитоплазматической мембраны фосфорилированным ферментом-2 молекулы субстрата; (3) энергозависимый транспорт молекулы субстрата в цитоплазму; (4) перенос фосфатной группы на молекулу субстрата; (5) диссоциация комплекса «субстрат – фермент» в цитоплазме. За счёт фосфорилирования молекулы субстрата аккумулируются в цитоплазме клеток и не способны выйти из них.

Классификация бактерий по типу питания.

По способу поступления питательных веществ бактерии подразделяются на голофиты и голозои . Бактерии-голофиты (от греч. holos – полноценный и phyticos – относящийся к растениям) неспособны выделять в окружающую среду ферменты, расщепляющие субстраты, вследствие чего потребляют питательные вещества исключительно в растворённом, молекулярном виде. Бактерии-голозои (от греч. holos – полноценный и zoikos – относящийся к животным), напротив, имеют комплекс экзоферментов, которые обеспечивают внешнее питание – расщепление субстратов до молекул вне бактериальной клетки. После этого молекулы питательных веществ поступают внутрь бактерий-голозоев.

По источнику углерода среди бактерий выделяют автотрофы и гетеротрофы . Автотрофы (от греч. autos – сам, trophe – пища) в качестве источника углерода используют углекислый газ (СО 2), из которого синтезируют все углеродсодержащие вещества. Для гетеротрофов (от греч. geteros – другой и trophe – пища) источником углерода являются различные органические вещества в молекулярной форме (углеводы, многоатомные спирты, аминокислоты, жирные кислоты). Наибольшая степень гетеротрофности присуща прокариотам, которые могут жить только внутри других живых клеток (например, риккетсии и хламидии).

По источнику азота прокариоты подразделяются на 3 группы: 1) азотфиксирующие бактерии (усваивают молекулярный азот из атмосферного воздуха); 2) бактерии, потребляющие неорганический азот из солей аммония, нитритов или нитратов; 3) бактерии, которые ассимилируют азот, содержащийся в органических соединениях (аминокислоты, пурины, пиримидины и др.).

По источнику энергии бактерии делят на фототрофы и хемотрофы . Бактерии-фототрофы , как и растения, способны использовать солнечную энергию. Фототрофные прокариоты заболеваний у человека не вызывают. Бактерии-хемотрофы получают энергию при окислительно-восстановительных реакциях.

По природе доноров электронов литотрофы (от греч. litos – камень) и органотрофы . У литотрофов (хемолитотрофов ) в качестве доноров электронов выступают неорганические вещества (Н 2 , Н 2 S, NH 3 , сера, CO, Fe 2+ и др.). Донорами электронов у органотрофов (хемоорганотрофов ) являются органические соединения – углеводы, аминокислоты и др.

Большинство патогенных для человека бактерий обладает хемоорганотрофным (хемогетеротрофным) типом питания; реже встречается хемолитотрофный (хемоавтотрофный) тип.

По способности синтезировать органические соединения бактерии-хемотрофы подразделяются на прототрофы, ауксотрофы и гипотрофы . Бактерии-прототрофы синтезируют из глюкозы и солей аммония все необходимые органические вещества. Бактерии называются ауксотрофами , если они неспособны синтезировать какое-либо органическое вещество из указанных соединений. Крайняя степень утраты метаболической активности называется гипотрофией. Гипотрофные бактерии обеспечивают свою жизнедеятельность, реорганизуя структуры или метаболиты хозяина.

Кроме углерода и азота, для полноценной жизнедеятельности бактериям необходимы сера, фосфор, ионы металлов. Источниками серы являются аминокислоты (цистеин, метионин), витамины, кофакторы (биотин, липоевая кислота и др.), сульфаты. Источниками фосфора служат нуклеиновые кислоты, фосфолипиды, фосфаты. В достаточно высоких концентрациях бактериям нужны магний, калий, кальций, железо; в значительно меньших – цинк, марганец, натрий, молибден, медь, никель, кобальт.

Факторы роста – это вещества, которые бактерии самостоятельно синтезировать не могут, но крайне в них нуждаются. В качестве факторов роста могут выступать аминокислоты, азотистые основания, витамины, жирные кислоты, железопорфирины и другие соединения. Для создания оптимальных условий жизнедеятельности бактерий факторы роста должны быть добавлены в питательные среды.

Метаболизм, превращение энергии

А) Конструктивный метаболизм.

Обязательной фазой питания бактерий является усвоение питательных веществ, то есть включение их в изменённом или модифицированном виде в синтетические реакции по воспроизведению клеточных компонентов и структур.

Белковый обмен у бактерий может протекать в 3 фазы: первичный распад белка, вторичный распад и синтез белка. Первичный распад белковых молекул до пептонов осуществляют экзоферменты – экзопротеазы, выделяемые бактериями в окружающую среду. Вторичный распад происходит под действием эндоферментов (эндопротеаз), которые имеют все бактерии. Этот процесс протекает внутри бактериальной клетки и заключается в расщеплении пептидов до составляющих их аминокислот. Последние могут быть использованы в неизменённом виде или быть подвергнуты химическим преобразованиям (дезаминирование, декарбоксилирование и др.), в результате которых появляются аммиак, индол, сероводород, кетокислоты, спирт, углекислый газ и др. Обнаружение указанных соединений имеет в бактериологии диагностическое значение.

Наряду с реакциями расщепления белков, происходят реакции их синтеза. Одни бактерии образуют белки из готовых аминокислот, полученных в результате внешнего питания, другие бактерии самостоятельно синтезируют аминокислоты из простых соединений, содержащих азот и углерод. Синтез аминокислот может осуществляться в реакциях аминирования, переаминирования, амидирования, карбоксилирования. Большинство прокариот способны синтезировать все аминокислоты, входящие в состав клеточных белков. Особенностью биосинтеза аминокислот является использование общих биосинтетических путей: цикл трикарбоновых кислот, гликолиз, окислительный пентозо-фосфатный путь и др. Основным исходным соединением для синтеза аминокислот является пируват и фумарат.

Углеводный обмен у автотрофов и гетеротрофов имеет отличия (схема 1). Бактерии-автотрофы все необходимые углеводы синтезируют из углекислого газа. Сырьём для образования углеводов у бактерий-гетеротрофов могут служить: (1) одно-, двух- и трёхуглеродные соединения; и (2) полисахариды (крахмал, гликоген, целлюлоза). Для расщепления последних многие бактерии-гетеротрофы имеют экзоферменты (амилаза, пектиназа и др.), которые проводят гидролиз полисахаридов до образования глюкозы, мальтозы, фруктозы и пр.


У бактерий-автотрофов в цикле Кальвина из углекислого газа образуется рибулозофосфат-фосфорно-глицериновая кислота, которая включается в реакции гликолиза, идущие в обратном направлении. Конечным продуктом обратного синтеза является глюкоза.

Бактерии-гетеротрофы образуют глюкозу из одно-, двух- и трёхуглеродных соединений, также включая их в реакции обратного гликолиза. Ввиду того, что некоторые реакции гликолиза необратимы, у гетеротрофов сформировались специальные ферментативные реакции, позволяющие обходить необратимые реакции катаболического пути.

При расщеплении бактериями-гетеротрофами полисахаридов образующиеся дисахариды поступают внутрь клеток и под влиянием мальтозы, сахарозы, лактозы подвергаются гидролизу и распаду на моносахара, которые затем сбраживаются либо включаются в реакции взаимопревращения сахаров.

Липидный обмен . Исходными материалами для образования липидов у бактерий могут служить как экзогенные липиды, так и амфиболиты межуточного обмена. Экзогенные липиды подвергаются действию бактериальных липаз и других липолитических ферментов. Многие виды бактерий усваивают глицерин, который служит источником пластического материала и энергии. Эндогенными источниками для синтеза липидов могут быть ацетилкоэнзим А, пропионил-АПБ, малонил-АПБ (АПБ – ацетилпереносящий белок), фосфодиоксиацетон и др.

Исходным субстратом для синтеза жирных кислот с чётным числом углеродных атомов служит ацетилкоэнзим А, для жирных кислот с нечётным числом углеродных атомов – пропионил-АПБ и малонил-АПБ. Образование двойных связей в молекуле кислоты у аэробных прокариот происходит при участии молекулярного кислорода и фермента десатуразы. У анаэробных прокариот двойные связи вводятся на ранних этапах синтеза в результате реакции дегидратации. Исходным субстратом для синтеза фосфолипидов служит фосфодиоксиацетон (промежуточное соединение гликолитического пути), восстановление которого приводит к образованию 3-фосфороглицерина. К последнему затем присоединяются 2 остатка жирных кислот в виде комплекса с АПБ. Продуктом реакции является фосфатидная кислота, активирование которой с помощью ЦТФ и последующее присоединение к фосфатной группе серина, инозита, глицерина или другого соединения приводят к синтезу соответствующих фосфолипидов.

Ауксотрофные и гипотрофные по жирным кислотам микроорганизмы (например, микоплазмы) получают их в готовом виде из клеток хозяина или питательной среды.

Мононуклеотидный обмен . Пуриновые и пиримидиновые мононуклеотиды являются важнейшими компонентами ДНК и РНК. Многие прокариоты способны как использовать содержащиеся в питательной среде готовые пуриновые и пиримидиновые основания, их нуклеозиды и нуклеотиды, так и синтезировать их из низкомолекулярных веществ. Бактерии располагают ферментами, катализирующими следующие этапы взаимопревращений экзогенных пуриновых и пиримидиновых производных: азотистое основание – нуклеозид – нуклеотид (моно- – ди- – трифосфат).

Синтез пуриновых и пиримидиновых мононуклеотидов de novo осуществляется независимыми путями. При синтезе пуриновых нуклеотидов в результате последовательных ферментативных реакций образуется инозиновая кислота, из которой путём химических модификаций пуринового кольца синтезируются адениловая (АМФ) и гуаниловая (ГМФ) кислоты. Синтез пиримидиновых нуклеотидов начинается с образования оротидиловой кислоты, декарбоксилирование которой даёт уридиловую кислоту (УМФ). Из последней образуется УТФ, ацилирование которого приводит к возникновению ЦТФ.

Дезоксирибонуклеотиды образуются в результате восстановления соответствующих рибонуклеотидов на уровне дифосфатов или трифосфатов. Синтез специфического для ДНК нуклеотида – тимидиловой кислоты происходит путём ферментативного метилирования дезоксиуридиловой кислоты.

Ионный обмен . Минеральные соединения – ионы, NH 3 + , К + , Mg 2+ , Fe 2+ , SO 4 2- , PO 4 3- и другие бактерии получают из окружающей среды как в свободном, так и в связанном с другими органическими веществами состоянии. Катионы и анионы транспортируются в бактериальную клетку различными способами, описанными в § 3. На скорость проникновения ионов в бактериальную клетку влияют рН среды и физиологическая активность самих микроорганизмов.

Б) Дыхание бактерий (энергетический метаболизм).

Все процессы жизнедеятельности энергозависимы, поэтому добывание энергии является крайне важной стороной метаболизма прокариот. Они получают энергию при анаэробном и аэробном дыхании.

Дыхание , или биологическое окисление – это катаболический процесс переноса электронов от вещества-донора на вещество-акцептор, сопровождающийся накоплением энергии в макроэргических соединениях . Дыхание осуществляется в процессе катаболических реакций, в результате которых сложные органические вещества, расщепляясь, отдают энергию и превращаются в простые соединения. Аккумулированная в макроэргических веществах (АТФ, ГТФ, УТФ и др.) энергия используется в анаболических реакциях.

По способу дыхания микроорганизмы подразделяются на облигатные (строгие) аэробы, облигатные анаэробы и факультативные анаэробы .

Облигатные аэробы нуждаются в свободном кислороде. Донорами электронов у патогенных для человека аэробов-хемоорганотрофов являются органические соединения (углеводы, жиры, белки), акцептором электронов – молекулярный кислород. Запасание энергии в виде АТФ у аэробов-хемоорганотрофов происходит при окислительном фосфорилировании доноров электронов. Аэробы обладают цитохромами (участвуют в переносе электронов), а также ферментами (каталаза, супероксиддисмутаза, пероксидаза), инактивирующими токсические кислородные радикалы, образующиеся при дыхании. Супероксиддисмутаза инактивирует наиболее токсичный метаболит – супероксидрадикал в Н 2 О 2 . Фермент каталаза превращает Н 2 О 2 в Н 2 О и О 2 .

Особую группу аэробов составляют микроаэрофильные бактерии , которые хотя и нуждаются в кислороде для получения энергии, лучше растут при повышенном содержании СО 2 , например, бактерии родов Campylobacter и Helicobacter .

Облигатные анаэробы не нуждаются в свободном кислороде, напротив, даже в малых количествах кислород оказывает на них токсическое действие. Донорами электронов у патогенных для человека анаэробов-хемоорганотрофов служат различные органические соединения (преимущественно углеводы). Акцептором электронов у анаэробов-хемоорганотрофов являются органические кислородсодержащие соединения – кислоты или кетоны, то есть акцептор электрона - связанный с органическим фрагментом кислород. Запасание энергии у этих прокариот происходит при субстратном фосфорилировании. Облигатные анаэробы, как правило, не имеют цитохромов и ферментов, инактивирующих кислородные радикалы (каталазо- и супероксидисмутазоотрицательны).

У непатогенных для человека анаэробов хемолитотрофов акцептором электронов являются неорганические кислородсодержащие соединения – нитраты, сульфаты, карбонаты.

Особую группу анаэробов составляют аэротолерантные бактерии, которые способны расти в присутствии атмосферного кислорода, но не используют его в качестве акцептора электронов (например, молочнокислые бактерии). Аэротолерантные прокариоты каталазо- и супероксиддисмутазопозитивны.

Факультативные анаэробы способны существовать как в кислородной, так и в бескислородной средах. Донорами электронов у них являются органические вещества; акцепторами электронов, в зависимости от условий среды – молекулярный или связанный в органических и неорганических соединениях кислород. Энергия факультативными анаэробами может аккумулироваться как при окислительном, так и при субстратном фосфорилировании. Как и аэробы, данная группа бактерий имеет цитохромы и ферменты антиоксидантной защиты.

Основным субстратом для получения энергии являются углеводы, которые у разных по типу дыхания хемогетеротрофных прокариот могут катаболизироваться до ацетилкоэнзима А («активированная уксусная кислота»). В качестве энергетических субстратов могут выступать липиды и белки, поскольку ацетилкоэнзим А также является одним из промежуточных продуктов их метаболизма (схема 2).

Катаболизм углеводов у хемоорганотрофных прокариот включает: (а) анаэробные процессы – гликолиз, пентозофосфатный путь и кетодезоксифосфоглюконатный путь; (б) аэробный процесс – цикл трикарбоновых кислот (цикл Кребса). Анаэробные процессы имеют место у всех прокариот, тогда как аэробный процесс характерен только для облигатных аэробов и факультативных анаэробов. В основе получения энергии анаэробными путями лежит субстратное фосфорилирование, в основе аэробного процесса – окислительное фосфорилирование.

Определение понятий.

Стерилизация, дезинфекция и антисептика являются неотъемлемыми частями современной медицинской и в особенности хирургической практики. Понимание принципов и практического применения этих методов необходимо, поскольку многие потенциально патогенные микроорганизмы способны оставаться жизнеспособными вне макроорганизма в течение длительного времени, проявлять высокую устойчивость к действию физических и химических дезинфектантов и относительно легко передаваться от одного человека к другому.

Антисептика - уничтожение или предотвращение роста патогенных или условно-патогенных микроорганизмов химическими методами. Этот термин обычно используют для обозначения наружного нанесения химического препарата на живые ткани.

Антисептик - вещество, которое угнетает рост или разрушает микроорганизм (без действия на споры бактерий). Термин является специфическим для обозначения веществ, которые используются для местного действия на живые ткани.

Асептика означает отсутствие сепсиса, но вообще этот термин используют для того, чтобы подчеркнуть отсутствие любых живых организмов. Асептические методы означают любую процедуру, предназначенную для элиминации живых организмов и предотвращения повторной контаминации ними. Современные хирургические и микробиологические методы основаны на асептических процедурах.

Биоцид - вещество, которое убивает все живые микроорганизмы, как патогенные, так и непатогенные, включая споры.

Биостат - агент, который предотвращает рост микроорганизмов, но необязательно убивает их.

Деконтаминация - удаление микроорганизмов без количественного определения. Этот термин является относительным; окончательное удаление микробов может быть осуществлено стерилизацией или дезинфекцией.

Дезинфекция - процесс, который уменьшает количество или полностью уничтожает все патогенные микроорганизмы, кроме спор.

Гермицид - вещество, которое разрушает микроорганизмы, особенно патогенные. Гермицид не разрушает споры.

Санация - метод, благодаря которому микробная контаминация уменьшается до “безопасного” уровня. Этот метод ранее использовали для “очищения” неживых объектов.

Стерилизация - использование физических факторов и (или) химических веществ для полного уничтожения или разрушения всех форм микробной жизни.

Стерилизация.

Стерилизацию определяют как разрушение или удаление (путем фильтрации) всех микроорганизмов и их спор. Стерилизацию обычно проводят с помощью тепла. Стерилизация, будучи одной из повседневных процедур в работе микробиологической лаборатории, является необходимым методом, обеспечивающим такую обработку, при которой культуры, оборудование, посуда и среды способствуют росту только необходимых микроорганизмов, тогда как другие микробы разрушаются. Различают такие виды стерилизации: прокаливание в пламени горелки, кипячение, действие текучим паром, паром под давлением в автоклаве, сухим жаром, пастеризация, тиндализация, химическая, холодная (механическая) стерилизация.

Выбор методов стерилизации.

При выборе методов стерилизации нужно учитывать следующие требования:

1. Активность: бактерицидная, спороцидная, туберкулоцидная, фунгицидная и вирусоцидная.

2. Скорость процедуры: стерилизация должна проводиться как можно более быстро.

3. Проницаемость: вещества-стерилизаторы должны проникать через упаковку и к внутренним частям инструментария.

4. Совместимость: не должны возникать изменения структуры или функции материалов, которые стерилизуют несколько раз.

5. Нетоксичность: не должно возникать угрозы для здоровья человека и состояния окружающей среды.

6. Устойчивость органического материала: эффективность стерилизации не должна снижаться в присутствия органического материала.

7. Приспособляемость: возможность использовать для больших и малых объёмов стерилизуемого материала.

8. Контроль в течение времени: цикл обработки должен легко и точно контролироваться.

9. Цена: разумная стоимость оснащения, установки и эксплуатации.

Физические стерилизаторы

Влажное тепло, которое образуется в процессе парового автоклавирования, является основным стерилизующим агентом, используемым в лабораториях клинической микробиологии. Автоклавы используют для стерилизации питательных сред, жароустойчивых материалов и обработки инфицированных отходов. Паровой стерилизатор, или автоклав, представляет собой изолированную камеру под давлением, которая использует насыщенный пар для создания высоких температур (рис. 1). Воздух удаляют из камеры замещением по массе или созданием вакуума. Наиболее часто используют автоклавы с замещением по массе. Более лёгкий пар запускают в камеру для вытеснения более тяжёлого воздуха. Кратковременная обработка паром под давлением может уничтожить бактериальные споры. Для рутинной стерилизации питательных сред и других материалов время экспозиции составляет 15 минут при 121ºС и давление - 1,5 кг на 1 квадратный сантиметр. Для инфекционных отходов время экспозиции увеличивается до 30-60 минут. Дополнительно к правильно выбранным времени и температуре, очень важным при стерилизации является прямой контакт с паром. При обработке инфекционного материала следует обеспечить максимальное проникновение пара в отходы. Такой материал необходимо обрабатывать при температуре 132ºС. Не подлежат автоклавированию антинеопластические препараты, токсичные химические вещества и радиоизотопы, которые могут не разрушиться, а также нестабильные химикаты, поскольку они под действием тепла могут испариться и распространиться по камере.

Стерилизация сухим жаром используется для материалов, которые невозможно стерилизовать паром в связи с возможностью повреждения или в связи с непроницаемостью материала для пара. Сухой жар менее эффективен, чем влажное тепло, и требует болеего времени экспозиции и более высоких температур. Стерилизацию сухим жаром обычно проводят в сухожаровом шкафу (рис. 2). Механизм стерилизации с помощью сухого жара является окислительным процессом. Примерами материалов, для которых используют стерилизацию сухим жаром, являются масла, порошки, острые инструменты и стеклянная посуда. Сухой жар или термическую инактивацию-стерилизацию используют как альтернативные методы обработки инфекционных отходов.

Пастеризация разрушает патогенные микроорганизмы путём быстрого нагревания вещества до 71,1ºС на протяжении 15 с, что сопровождается последующим быстрым охлаждением. Пастеризация не является стерилизацией, поскольку не все микроорганизмы чувствительны к ней. Этот метод элиминировал пищевой путь передачи таких заболеваний, как туберкулез пищеварительного тракта и Q-лихорадка.

Тиндализация - это метод стерилизации прерывистым нагреванием, который может использоваться для уничтожения всех бактерий в растворах. Поскольку растущие бактерии легко гибнут при кратковременном кипячении (5 раз в течение 1 часа по 5 минут), всё, что необходимо сделать, это позволить раствору постоять на протяжении определенного времени, прежде чем тепло нарушит созревание спор с существенной потерей их устойчивости к теплу.

Фильтрация - это процесс, который используют для удаления микробов и микроскопических частей из растворов, воздуха и других газов. Наиболее часто стерилизацию путем фильтрации в лаборатории используют для обработки диагностических препаратов, питательных сред, тканевых культуральных сред, сывороток, растворов, которые содержат компоненты сыворотки. Другим общепринятым применением фильтрации является стерилизация воздуха и газов. Пластиковые или бумажные мембранные фильтры, которые различают по диаметру пор (примерно от 12 до 0,22 μм) и используют для механического разделения, служат и для сбора микробов из жидкостей для микроскопического изучения или культивирования прямо на фильтре, когда его помещают на поверхность, пропитанную питательной средой.

Ультрафиолетовое облучение является видом электромагнитной волновой радиации, которая действует на клеточную нуклеиновую кислоту. Микроорганизмы высокочувствительны к действию ультрафиолетовых лучей с длиной волны 254 нм. Ультрафиолет наиболее широко используют для уничтожения микроорганизмов, находящихся в воздухе или на каких-либо поверхностях. Другим применением является холодная стерилизация определенных химикатов и пластика для фармацевтических целей, стерилизация сыворотки для клеточных культур и дезинфекция воды. Существенным недостатком ультрафиолетового облучения в качестве стерилизатора является его неспособность к проникновению внутрь материалов.

Ионизирующее излучение в электромагнитном спектре летально действует на микроорганизмы. Этот спектр включает микроволны, γ-лучи, рентгеновские лучи и поток электронов. Летальный эффект от ионизирующего излучения возникает вследствие прямого действия на молекулу-мишень, в результате чего энергия переносится в молекулу; и вследствие косвенного действия - диффузии радикалов.

Ультразвуковая энергия с низкой частотой инактивирует микроорганизмы в водных растворах. Физический эффект обработки ультразвуком возникает вследствие кавитации. Ультразвуковые очистители и другие приборы часто используют для очистки инструментов, но не считают стерилизаторами. Однако комбинирование ультразвука с химической обработкой убивает микроорганизмы.

Химические стерилизаторы

2 % глютаровый альдегид в качестве жидкого химического стерилизатора ранее широко применяли для обработки медицинского и хирургического материала, который невозможно стерилизовать нагреванием или облучением. Глютаровый альдегид также используют при приготовлении вакцин.

Дезинфекция.

Дезинфекцию можно проводить химическими методами или кипячением. Кипячение является эффективным методом дезинфекции инструментария, например, игл и шприцев, если нет автоклава. Предварительно очищенный медицинский инструментарий следует кипятить 20 минут. Химическую дезинфекцию используют для чувствительного к действию тепла оборудования, которое может повредить высокая температура. Широко используют такие химические дезинфектанты, как компонента хлора, этиловый и изопропиловый спирт, четвертичные компоненты аммония и глютаровый альдегид.

Химические дезинфектанты.

Спирт (этиловый и изопропиловый) , растворённый в воде до концентрации 60-85 %, очень эффективен при дезинфекции. Спирты имеют бактерицидное, фунгицидное и туберкулоцидное действие, но не влияют на споры. Этиловый спирт имеет более широкий спектр вирусоцидной активности, чем изопропиловый, поэтому он более эффективно действует на липофильные и гидрофильные вирусы.

Раствор 37 % формальдеида , который называют формалином, можно использовать в качестве стерилизатора, тогда как его концентрации 3-8 % можно использовать в качестве дезинфектантов.

Фенол в чистом виде не используют в качестве дезинфектанта в связи с его токсичностью, способностью индуцировать развитие опухолей и коррозии. Дериваты фенола, в которых функциональная группа (хлор, бром, алкил, бензил, фенил, амил) замещает один из атомов водорода в ароматическом кольце, широко используют в качестве дезинфектантов. Подобное замещение уменьшает недостатки фенола. Компоненты фенола убивают микробы благодаря инактивации ферментных систем, преципитации белков и нарушению клеточной стенки и мембраны. Обычно используют концентрации 2-5 %, более низкая концентрация требует более длительной экспозиции.

Галогены. Только хлор и йод используют для дезинфекции в лабораторной практике. В связи с тем, что хлор является мощным окислителем, считают, что он убивает микробы путем окисления. Считают, что йод убивает микроорганизмы путём реакции с N-H и S-H группами аминокислот, а также с фенольной группой аминокислоты тирозина и углерод-углеродными двойными связями ненасыщенных жирных кислот. Обычная обработка включает распыление 2-5 % раствора формальдегида в присутствии пара при температуре 60-80ºС.

Антисептика.

Антисептики можно обнаружить в микробиологических лабораториях, прежде всего, в веществах, которые используют для мытья рук. В тех случаях, когда медицинский персонал оказывает неотложную помощь пациентам с использованием веществ, содержащих антибактериальные агенты, это уменьшает количество госпитальных инфекций. Наиболее распространёнными химическими соединениями, содержащимися в веществах для мытья рук, являются спирты, хлоргексидина глюконат, йодофоры, хлороксайленол и триклозан.

Традиционными методами обработки отходов и мусора являются сжигание и стерилизация паром.

Сжигание является методом выбора для обработки отходов и мусора. Этот метод делает отходы неинфекционными, а также изменяет их форму и размеры. Стерилизация является эффективным методом обработки отходов, но она не изменяет их формы. Стерилизация паром в автоклаве при 121ºС в течение минимум 15 минут уничтожает все формы микробной жизни, включая большое количество бактериальных спор. Этот тип полной стерилизации также можно провести с использованием сухого жара при температуре 160-170ºС на протяжении 2-4 часов. Однако следует убедиться, что сухой жар контактирует со стерилизуемым материалом. Поэтому бутылки, которые содержат жидкость, должны быть неплотно закрыты пробками или ватными тампонами для того, чтобы пар и жар могли обмениваться с воздухом в бутылках. Биологически опасные контейнеры, содержащие отходы, следует плотно завязать. Простерилизованный биологически опасный материал нужно запечатать в соответствующие контейнеры с этикетками.

Стерилизация паром (в автоклаве). Инфекционный мусор считают деконтаминированным при уменьшении в 6 lg раз количества вегетативных бактерий, грибов, микобактерий и вирусов, содержащих липиды, и в 4 lg раза - бактериальных эндоспор.

Питание бактерий.

Питание. Под питанием бактериальной клетки следует понимать процесс поглощения и усвоения пластического материала и энергии в результате преобразовательных реакций . Типы питания прокариот сложны и разнообразны. Они различаются в зависимости от способа поступления питательных веществ внутрь бактериальной клетки, источников углерода и азота, способа получения энергии, природы доноров электронов.

Транспорт питательных веществ внутрь клетки может осуществляться 3 механизмами: пассивной диффузией, облегчённой диффузией и активным транспортом.

Пассивная диффузия является неспецифическим энергозависимым процессом, осуществляемым по градиенту концентрации веществ (вещество из среды с большей своей концентрацией пассивно, согласно законам осмоса, поступает в среду с меньшей концентрацией). Пассивной диффузией внутрь бактериальной клетки поступает ограниченное количество веществ, некоторые ионы, моносахара. Скорость переноса веществ при пассивной диффузии незначительна и зависит от липофильности и размеров транспортирующихся молекул.

Облегчённая диффузия представляет собой энергонезависимый транспорт веществ по градиенту концентрации при помощи ферментов пермеаз. Пермеазы – это специфические мембранные белки, способствующие прохождению веществ через цитоплазматическую мембрану. Пермеаза фиксирует на себе молекулу переносимого вещества, вместе с которым пеодолевает цитоплазматическую мембрану, после чего комплекс «вещество – пермеаза» диссоциирует. Освободившаяся пермеаза используется для проведения других молекул. У прокариотов облегчённой диффузией внутрь клетки поступает только глицерин. При этом внутриклеточная концентрация глицерина соответствует таковой вне клетки. Облегчённая диффузия наиболее характерна для микроорганизмов-эукариот.

Активный транспорт – это энергозависимый перенос веществ внутрь клетки против градиента концентрации при помощи специфических ферментов. Активным транспортом в бактериальную клетку поступает подавляющее большинство веществ (ионы, углеводы, аминокислоты, липиды и др.). Активный транспорт может осуществляться: (1) без химической модификации переносимого вещества; (2) с химической модификацией.

Существуют два типа систематики биологических объектов: филогенетическая, или естественная , в основе которой лежит установление родственных (генетических, эволюционных) связей между организмами, и практическая, или искусственная , целью которой является выявление степени сходства между организмами для быстрой их идентификации и установления принадлежности к определенным таксонам.

Большинство классифи­каций бактерий является искусственными. Они предназначены для определения той или иной группы микроорганизмов, представляющих интерес для исследователей

Классификация всех живых существ основана почти полностью на морфологических признаках организ­мов.

Морфология микроорганизмов изучает форму и особенности строения клеток, способы размножения и передвижения, и др. Морфологические признаки играют большую роль в идентифи­кации микроорганизмов и их классификации.

У бактерий классификация имеет специфические особенности вследствие немногочисленности их морфологических признаков. Со­временная микробиология для классификации использует комплекс признаков: морфологические (форма клеток, наличие и характер распо­ложения жгутиков, способ размножения, окраска по Граму, способ­ность к образованию эндоспор; физиологические особенности (способ питания, получение энергии, состав продуктов обмена, отношение к воздействию температуры, рН, кислорода и др. факторам) ; культуральные (характер роста на различных питательных средах культуры бактерии; на жидких средах - наличие пленки, мути, осадка; на плот­ных средах - тип колоний и их особенности).

В настоящее время большое значение имеют биохимические (генотипические) признаки, т.е. особенности нуклеотидного состава ДНК. Достоверно известно, что особи одного и того же вида имеют одинаковый состав оснований ДНК, а у видов, принадлежащих к одному роду, нуклеотидный состав имеет близкие значения. По совокупности морфологических, физиологических, культуральных и биохимических признаков бактерии могут быть отнесены к тому или иному виду.

В последние годы получила признание искусственная классифи­кация бактерий, предложенная Р.Мюрреем (R.Murray) в 1978 году. Согласно этой классификации царство прокариот «Procaryotae» подразделено на четыре отдела. Распределение микроорганизмов по отделам основано главным образом, на наличии или отсутствии клеточных стенок и особенностей их строения. Для микробиологии пищевых производств имеют значения два отдела:

В первый отдел Firmicutes («Firmus» - толстый, основательный) или «толстокожие», отнесены все бак­терии, для которых характерно строение клеточной стенки по типу Грам+ бактерий: все кокки, молочнокислые бактерии (педиококки - Pediococcus, лактобациллы – Lactobacillus, стреп-тококки – Streptococcus и лейконосток – Leuconostoc), палочковидные спорообразующие бактерии (Bacillus, Clostridium) и актиномицеты. Второй отдел Gracilicutes («Gracilus» - тонкий, изящный, «cutes» - кожа) или «тонкокожие», объединяет все бактерии, которые имеют клеточную стенку, характерную для Грам- бактерий: род Pseudomonas (некоторые гнилостные бактерии и др.), роды Acetobacter и Gluconobacter (уксуснокислые бактерии), используемые в производстве уксуса, а также вредители бродильных произ­водств. К Грам- палочкам относится и многочисленная группа – энтеробактерии (бактерии кишечной группы), в т.ч. и род Escherichia. Неко­торые из бактерий кишечной группы постоянно населяют кишечник человека и животных. Другие - являются возбудителями инфекционных желудочно-кишечных заболеваний (дизентерии, брюшного тифа, паратифов), передающихся через пищевых продукты, и пищевых отравлений.

Контрольные вопросы:

1. Каковы основные формы бактерий пищевых производств? 2. Назовите основные функции и химический состав клеточной стенки бактерий? 3. Какие фукнции в бактериальной клетке выполняет цитоплазматическая мембрана? 4. Чем представлен генетический аппарат у прокариот? 5.Что такое плазмиды, у каких бактерийони присутствуюти какие функции выполняют? 6.Как передвигаются бактерии? 7.Какие функции выполняют эндоспоры у бактерий, и при каких условиях они образуются? 8.Назовите основной принцип классификации бактерий?

Эукариоты - микроскопические грибы (мицелиальные грибы и дрожжи)

Для мицелиальных грибов характерны разнообразные способы и органы размножения. Различия в строении мицелия и спо­собах размножения используются для классификации грибов. Клетки грибов имеют ветвящиеся нити - гифы с верхушечным ростом и боковым ветвлением, переплетаясь они образуют мицелий (грибницу).

Грибы размножаются вегетативным, бесполым и половым путями.

Вегетативное размножение осуществляется отдельными участками мицелия, т.е. без образования специализированных органов раз­множения.

При бесполом и половом размножении образуются специализи­рованные клетки - споры, с помощью которых и осуществляется раз­множение.

Образованию спор при бесполом размножении предшествует митотическое деление ядра , при котором образуются два дочерних ядра с набором хромосом, идентичным набору родительской клетки.

Споры при бесполом размножении образуются на особых плодо­-
носящих гифах воздушного мицелия, внешне отличающихся от вегета­-
тивных гиф.

У низших грибов споры образуются внутри специальных клеток -спорангиев, они носят название спорангиоспоры . У высших грибов споры образуются экзогенно (наружно) на ги­фах воздушного мицелия и носят название конидии .

Рис.12. Органы вегетативного и бесполого размножения грибов: а - оидии; б - хламидоспоры; в - спорангиоспоры; г – конидии

Образованию спор при половом размножении, предшествует слияние (копуляция ) двух половых клеток гамет и их ядер. Образуется диплоидная клетка - зигота , содержащая двойной набор хромосом. Затем следует процесс редукционного деления - мейоз, сопровождающийся перераспределением отцовских и материнских признаков, приводящий к уменьшению числа хромосом до исходного и увеличению разнообразия видов. В результате образуются специализированные органы размножения. Развитие этих органов, формы полового процесса у грибов многообразны.

Классификация грибов . Подразделение грибов на классы основано на использовании комплекса признаков, ведущими из которых являются особенность состава клеточной стенки, типы полового и бесполого размножения. Согласно современной классификации все грибы распределены по следующим классам:

Класс Chytridiomycetes (Хитриодиомицеты )

Synchytrium - является возбудителем рака картофеля.

Класс Zygomycetes (Зигомицеты ): Род Мucor - вызывают порчу пищевых продуктов, образуя пушистые налеты.

Рис.13. Род Мucor Рис.14. Род Rhizopus

Грибы рода Rhizopus вызывают так называемую «мягкую - гниль» ягод, плодов и овощей. Мукоровые грибы образуют органические кислоты и ферменты, способны вызывать слабое спиртовое брожение.

Класс Ascomycetes (Аскомицеты ): К аскомицетам относятся имеющие большое значение аспергилловые и пеницилловые грибы.

Рис.15. Aspergillus niger Рис.16. Penicillium chrysogenum

Сумчатые грибы широко распространены в природе. Многие из них являются возбудителями порчи плодов и овощей, (особенно при их хранении - различные гнили), многих пищевых продуктов. Некоторые из них вызывают повреждение промыш­ленных изделий и материалов (текстиля, резины, целлофана, пластмасс и т.д.). Отдельные представители аспергилловых и пеницилловых грибов используются в промышленности. Так некоторые пенициллы являются продуцентами антибиотиков – пенициллина, цефалоспорина, гризеофульвина, цитринина и др. Penicillium roqueforti , Penicillium camemberti используют в производстве сыра сортов Рокфор и Камамбер; Aspergillus niger – для промышленного получения лимонной кислоты; A. oryzae, A. awamori - для получения ферментных препаратов. Некоторых аспергиллы являются па­тогенными для человека и животных, вызывая поражение дыхатель­ных путей (отомикозы, аспергиллез и эмфизему легких), кожи (дерматомикозы), слизистой рта.

В последние полвека особое внимание ученых обращено на вторичные метаболиты мицелиальных грибов, развивающихся на пищевом сырье растительного и животного происхождения и на пищевых продуктах и кормах, - микотоксины . Примерно 60 – 75% грибов-возбудителей порчи пищевых продуктов и кормов животных являются токсичными и высокотоксичными. Употребление заплесневелых пищевых продуктов крайне опасно для здоровья человека и животных. Многочисленными исследованиями установлено гепатотропное, канцерогенное и мутагенное действие на организм человека и животных афлатоксинов, охратоксинов, патулина, рубратоксина и др., выделяемых грибами Aspergillus flavus, A. ochraceus, Penicillium veridatum, P.islandicum, P. rubrum, P. expansum и др. Все микотоксины опасны даже в незначительных количествах и с трудом поддаются деградации (разрушению).

Рис.17. Claviceps (спорынья) Рис.18. Monilia (монилия)

К плодосумчатым аскомицетам относятся также трюфели и сморчки, плодовые тела которых употребляют в пищу, а также строчки, считающиеся условно съедобными, так как некоторые их виды ядовиты.

Рис.19: а – шапочка сморчковая; б - строчок осенний.

Рис.20. Трутовый гриб

Эта способность у них выражена гораздо резче, чем у высших растений, лишайников и других организмов. Вот почему нельзя соби­рать грибы в местах загрязненных отходами производства. Накопление ука­занных элементов вызывает ряд необратимых перестроек в биохимическом аппарате грибов. Это явление пока что мало изучено и поэтому представляет угрозу для здоровья человека.

Класс Deuteromycetes (Дейтеромицеты ): По­ловое размножение у них отсутствует, размножаются они только бес­полым путем, в основном конидиями, которые, как и конидиеносцы, имеют самую различную форму, вид и окраску. У некоторых видов не образуется специализированных органов размножения, и они размно­жаются кусочками мицелия.

Рис.21. Род Fusarium (Фузариум) Рис.22. Род Botrytis

Род Botrytis гриб вызывает кагатную гниль сахарной свеклы; развиваясь на винограде, плодах и ягодах, размягчает гкани, которые становятся водянистыми. Проду­цирует ферменты пектиназу, цеплюлазу, инвертазу др.

Виды Alternaria широко распространены в почве и на растительных остат­ках. Гриб вызывает заболевание многих сельскохозяйственных расте­ний альтернариоз. На пищевых продуктах образуют черные вдавленные пятна (черная сухая гниль моркови, чер­ная пятнистость капусты). Когда пораженные участки листа выпадают, образуются дырочки.

Род Geotrichum раз­вивается на поверхности кисломолочных продуктов, сыров, квашеных овощей, прессованных дрожжей, стенках оборудования, сырых поме­щений. Некоторые виды рода Geotrichum вызывают порчу плохо вы­сушенного хмеля.

Род Monilia являются активными воз­будителями порчи плодов, которые превращаются в так назы­ваемые «мумии». Представители этого рода, относящиеся к классу дейтеромицетов, существуют в конидиальной стадии.

Род Cladosporium. Грибы нередко обнаруживаются при холодильном хране­нии на различных пищевых продуктах в виде бархатистых темно-оливковых (до черного цвета) пятен.

Род Helminthosporium Болезни злаков, вызываемые грибами этого рода, называют гельмин­тоспориозами. Некоторые виды этого рода - сапрофиты и развиваются на корнях, листьях, сухих ветвях, стеблях, стеблях древесины и травянистых растений.

Рис. 23. Род Helminthosporium

Дрожжи являются одноклеточными грибными неподвижным организмами, не имеющими настоящего мицелия. Обитают в основном на растениях, где имеются сахаристые вещества, которые они сбраживают (нектар цветов, сочные фрукты, ягоды, особенно перезре­лые и поврежденные, листья, стволы березы во время сокотечения и дуба во время слизетечения, почва). Клетки дрожжей имеют овальную, цилиндрическую, яйцевидную, лимоновидную, колбовидную, треугольную, стреловидную и серповидную форму. Некоторые виды дрожжей наря­ду с круглыми и овальными клетками могут образовывать удлинен­ные, а также псевдомицелий. Дрожжевые клетки, значительно крупнее бактериальных.

Как и все грибы, дрожжи являются неподвижными организмами. Дрожжи имеют достаточно сложную структур­ную организацию, типичную для эукариотных организмов.

Дрожжи размножаются вегета­тивно и спорами, образующимися бесполым и половым путем. Способ размножения является важным признаком для классификации дрожжей. Наиболее распространенным способом вегетативного раз­множения является почкование.

Если при почковании вновь возникающие клетки не отделяются друг от друга, то образуется псевдомицелий. Размножение делением, характерное для дрожжей цилиндри­ческой формы, встречается реже. У дрожжей лимоновидной формы наблюдается так назы­ваемое почкующееся деление, при котором на широком основании формируется почка, процесс заканчивается появлением хорошо замет­ной септы в районе перешейка.

При половом размноже­нии их появлению предшествует слияние клеток и последующее объ­единение ядер, при бесполом размножении предварительное слияние клеток и ядер не происходит. Половое размножение большинства дрожжей связано с образо­ванием асков (сумок) и аскоспор.

Образованию аскоспор предшествует копуляция (слияние содержимого двух клеток и их ядер). Образуется зигота, в которой затем формируются споры: ядро делится мейозом, вокруг новых ядер уплотняется цитоплазма, и они покрываются плот­ной оболочкой. Такие дрожжи относятся к классу аскомицетов. Ас­коспоры могут образовывать только молодые клетки на полноценной питательной среде и перенесенные в условия голодания, плохого снаб­жения кислородом и влагой. У различных видов дрожжей в аске об­разуется

2 - 4, а иногда 8 спор. При спорообразовании замедлен обмен веществ и жизнедеятельность клеток. Такое состояние обеспечи­вает их выживаемость в условиях, неблагоприятных для вегетативного размножения.

Аскоспоры устойчивы к действию высокой температу­ры, высушиванию, но они менее термостабильны, чем бактериальные споры, и погибают при температуре 60°С. При условиях, благоприят­ных для вегетативного развития, на свежей питательной среде споры прорастают и снова размножаются вегетативно. Поскольку дрожжи по существу являются одноклеточными немицелиальными грибами, они включены в классификацию грибов. Они распределены по трем классам грибов –Ascomycetes, Basidiomycetes и Deuteromycetes .

Аскомицетовые дрожжи включают примерно 2/3 дрожжей. Среди них наибольшее практическое значение имеют сахаромицеты, объединяющие более половины известных родов дрожжей. Особо важная роль принадлежит Saccharomyces cerevisiae (крупные овальные клетки) в производстве этилового спирта, пива, кваса и в хлебопечении и Saccharomyces ellpsoideus (крупные эллиптические клетки) - их используют преимущественно в виноделии.

Рис.25. Saccharomyces cerevisiae

Дрожжи класса Deuteromycetes наибольшее значение имеют роды Candida, Torulopsis и Rhodotorula. Candida имеют удлиненную форму клеток, сочетания которых образуют примитивный псевдомицелий. Многие из них не вызывают спиртовое брожение и являются вредителями в бродильных производствах (например, Candida mycoderma ). Другие представители рода Candida являются вредителями в дрожжевом производстве, снижают качество хлебопекарных дрожжей, так как относятся к слабосбраживающим видам. Некоторые из них вызывают порчу квашенных овощей, безалкогольных и ряда других напитков и продуктов. Среди этих дрожжей имеются патогенные виды, вызывающие кандидозы, поражающие слизистые оболочки ротовой полости, носоглотки и других органов человека. Различные виды дрожжей рода Candida используются для получения кормового белка и белково-витаминных концентратов (БВК).

Дрожжи рода Torulopsis способны вызывать слабое спиртовое брожение и используются в производстве кефира и кумыса. Некоторые применяются для промышленного получения кормового белка.

Дрожжи рода Rhodotorula используются для промышленного получения кормовых белково-витаминных концентратов, которые служат источником жирорастворимого витамина А для животных. Другие представители этого рода накапливают в клетках много липидов и используются в микробиологической промышленности как продуценты липидов.

Вирусы

Рис.26. Бактериофаг: А – модель фага; Б – фаг, инъецкцировавший свою ДНК в клетку

В медицине бактериофаги применяются для лечения некоторых заболеваний, например дизентерии.

Контрольные вопросы :

1 . Каковы морфологические особенности и способы размножения мицелиальных грибов? 2. Каковы особенности строения и размножения дрожжей? 3. Расскажите об основных принципах классификации прокариот и эукариот. 4. Назовите основных представителей отдельных классов эукариот и их практическое значение.5. Расскажите остроении и практическом значении вирусов и фагов.

Обмен веществ у микроорганизмов отличается чрезвычайным раз­нообразием. Это связано со способностью микроорганизмов использо­вать для обмена веществ широкий круг органических и минеральных соединений. Такая способность обусловливается наличием у микроор­ганизмов большого разнообразия ферментов. На активность ферментов влияют температура, рН и другие факторы внешней среды - воздействие химических веществ среды, лучистая энергия и др. Физиологические процессы, протекающие в клетках микроорганизмов, почти полностью зависят от активности ферментов, поэтому любой фактор, действующий на фермент, будет воздействовать и на метаболизм микроорганизмов.

Каждому виду микроорганизмов свойственен определенный набор ферментов, постоянно присутствующих в клетке (т.н. конститутивные ферменты). В то же время некоторые ферменты синтезируются клеткой только тогда, когда в среде появляется соответствующий субстрат. Такие ферменты называют индуктивными.

По характеру действия ферменты подразделяются на экзоферменты, выделяемые клеткой в окружающую среду, и эндоферменты. прочно связанные с клеточными структурами (митохондриями, цитоплазматической мембраной и мезосомами) и действуют внутри клетки. И те, и другие играют важную роль в обмене веществ микроорганизмов. Экзоферменты (обычно гидролазы) катализируют реакции вне клетки. К эндоферментам относятся оксидоредуктазы (окислительно-восстановительные ферменты), трансферазы (ферменты переноса) и др., играющие важную роль в энергетическом обмене.

Конструктивный обмен веществ заключается в биосинтезе основных клеточных компонентов из поступивших в клетку веществ питательной среды. Конструктивный обмен направлен на синтез четырех основных типов биополимеров: белков, нуклеиновых кислот, полисахаридов и липидов. Синтез протекает как серия последовательных реакций с образованием разнообразных промежуточных продуктов метаболизма. Кроме того, уровни развития биосинтетических способностей микроорганизмов различны. Именно поэтому микроорганизмы резко отличаются друг от друга по своим потребностям в питательных ве­ществах. Независимо от их потребностей в питательной среде должны содержаться все элементы, которые имеются в клетках микроорганизмов. По отношению к источникам углерода все микроорганизмы делятся на две большие группы: автотрофы и гетеротрофы . Соответственно и тип питания этих микроорганизмов называется либо автотрофным, либо гетеротрофным. Микроорганизмы, использующие для биосинтеза веществ клетки неорганический источник углерода (СО 2),называются автотрофами. Микроорганизмы, которые не могут использовать СО 2 в качестве единственного источника углерода, и нуждаются в органических соединениях, называются гетеротрофами. К гетеротрофам относится большинство микроорганизмов.

Многие гетеротрофные микроорганизмы для синтеза веществ клетки в качестве источника углерода используют в основном углеводы, а также спирты, но, кроме того, могут использовать липиды, белки, аминокислоты (их углеродный скелет) и гораздо реже - органические кислоты. По отношению к источнику азота микроорганизмы делятся на аминоавтотрофы и аминогетеротрофы. Аминоавтотрофы усваивают азот из минеральных соединений (нитратов, нитритов, аммонийных солей и т.п.) Аминогетеротрофы нуждаются в готовых органических азотсодержащих соединениях (белках, аминокислотах, пуринах, пиримидинах), которые они используют одновременно как источник углерода и азота.

Сапрофиты питаются за счет органических веществ отмерших животных и растений. К ним относятся гнилостные бактерии, мицелиальные грибы, актиномицеты, дрожжи, бактерии-возбудители процессов брожения и др.

Поступление воды и питательных веществ из окружающей среды и выделение продуктов метаболизма у микроорганизмов происходит через всю поверхность клеток. Вещества питательной среды должны обладать растворимостью в воде или в липидах, поскольку они могут проникать внутрь микробной клетки только в растворенном виде; продукты метаболизма выводятся из клетки также в растворенном состоянии. Нерастворимые сложные органические вещества (белки, полисахариды, жиры и др.) питательной среды предварительно подвергаются расщеплению вне клетки на более низкомолекулярные соединения, обладающие растворимостью в воде (аминокислоты, моносахариды, органические кислоты и др.), с помощью выделяемых во внешнюю среду микроорганизмами гидролитических ферментов.

Молекулы воды, некоторых газов О 2 , Н 2 , N 2 , некоторые ионы, концентрация которых во внешней среде выше, чем в клетке, перемещаются через ЦПМ внутрь клетки путем пассивной диффузии. Пассивный перенос веществ протекает до тех пор, пока концентрация веществ по обе стороны ЦПМ не выровняется. Вода - основное вещество, которое проникает в клетку путем пассивной диффузии.

В клетку из питательной среды поступают только те питательные вещества, для которых в ЦПМ имеются соответствующие переносчики, и в этом проявляется избирательная проницаемость ЦПМ.

Пермеазы обладают строгой специфичностью к субстрату, т.е. каждый из них переносит только определенное веще­ство. Переносчик вступает во взаимодействие с веществом на наруж­ной стороне ЦПМ, и этот комплекс диффундирует через ЦПМ к внут­ренней стороне ЦПМ, комплекс распадается и затем вещество пере­дается в цитоплазму. После этого переносчики "захватывают" опреде­ленные продукты обмена, выносят их из клетки и процесс повторяется. Таким образом, в клетку из питательной среды поступают только те вещества, для которых в ЦПМ имеются соответствующие переносчики, и в этом проявляется избирательная проницаемость ЦПМ.

С помощью переносчиков осуществляется перенос растворенных веществ питательной среды путем облегченной диффузии и активного транспорта.

Облегченная диффузия происходит по градиенту концентрации, как и пассивная диффузия, она протекает тоже без затраты энергии, но с большей скоростью.

Рис 27. .Транспорт веществ через цитоплазматическую мембрану:

а - цитоплазма: б - мембрана; в- окружающая среда: р – переносчик

Активный транспорт веществ идет против градиента концентра­ции, т.е. от меньшей концентрации к большей, что обязательно сопро­вождается затратой энергии. Попав внутрь клетки, вещество осво­бождается от переносчика также с затратой энергии. При активном транспорте скорость поступления вещества в клетку достигает макси­мума уже при малой концентрации его в питательной среде, причем концентрация этого вещества в клетке может значительно превысить его концентрацию в питательной среде.

Прокариоты и эукариоты различаются по механизмам транспор­та - у прокариот избирательное поступление питательных веществ происходит путем активного транспорта, у эукариот - путем облегчен­ной диффузии. Вывод продуктов обмена из клеток микроорганизмов чаще всего осуществляется путем облегченной диффузии.

error: