Водородная связь образуется между атомами водорода и. Химическая водородная связь: примеры

v Водородная связь

Ø Водородной связью называется электростатическое взаимодействие атома водорода, связанного с сильно электроотрицательным элементом, с другими атомами.

Водородные связи образует атом водорода, связанный с атомом фтора, кислорода или азота. Электроотрицательность других элементов недостаточна для того, чтобы заставить образовать прочную водородную связь связанный с ними атом водорода. Механизм образования водородной связи рассмотрим на примере взаимодействия молекул фтороводорода. Высокая электроотрицательность атома фтора приводит к тому, что связь водород-фтор в данной молекуле сильно полярна и общая пара электронов смещена к фтору H®F. Поскольку у атома водорода отсутствует внутренняя электронная оболочка, оттягивание его валентного электрона почти полностью обнажает ядро, представляющего собой элементарную частицу - протон. По этой причине сильно поляризованный атом водорода обладает очень мощным электростатическим полем, за счет которого он притягивается к атому фтора другой молекулы фтороводорода с образованием водородной связи:

Водородной связи присущи следующие особенности:

1. Водородная связь является насыщаемой. Атом водорода образует лишь одну водородную связь; его партнеры могут участвовать в образовании нескольких водородных связей.

2. Водородная связь является направленной. Фрагмент Х-Н××××Y обычно линейный, хотя в некоторых случаях может быть и угловым, но при этом величина валентного угла не сильно отличается от 180°.

3. Энергия водородной связи невелика (8-40 кДж/моль) и представляет величину того же порядка, что и энергия межмолекулярного взаимодействия. Прочность водородной связи тем выше, чем больше электроотрицательность партнера атома водорода. Так энергия связи H××××F составляет 25-40 кДж/моль, связи Н××××О - 19-21 кДж/моль, связей N××××H и S×××H - около 8 кДж/моль.

4. Водородная связь асимметрична: во фрагментах Х-Н××××Х длина связи Н××××Х больше длины Н-Х.

Водородная связь более длинная по сравнению с ковалентной и имеет меньшую энергию. Тем не менее, она оказывает очень большое влияние на физические свойства веществ, значительно увеличивая их температуры плавления и кипения. Так, фтороводород имеет т. пл. -83 °С и т. кип. +20 °С, в то время как его ближайший аналог - хлороводород плавится при - 114 °С и кипит при - 85 °С. Фактически, за счет водородных связей, фторофодород представляет собой полимер, который начинает частично диссоциировать только при температуре, близкой к температуре кипения. Но даже в газовой фазе фтороводород существует в виде малых ассоциатов молекул, в основном в виде димеров. В виде мономерных молекул фтороводород существует только при температурах выше 90 °С. Очень прочные водородные связи образует молекула воды, окруженная в кристаллическом состоянии (лед) четырьмя соседями.

Трехмерная сетка водородных связей, построенная из тетраэдров, существует и в жидкой воде во всем интервале температур от плавления льда и до ее кипения.

Наряду с межмолекулярными существуют и внутримолекулярные водородные связи, не оказывающие столь значительного влияния на физические свойства вещества.

Муравьиная кислота НСООН и многие другие карбоновые кислоты в жидком и газообразном состояниях за счет водородных связей образует циклические димеры.

Очень важную роль водородные связи играют в организации многих биологически важных макромолекул (a-спирали и b-структуры белков и полипептидов, двойная спираль ДНК и т.д.).

v Силы межмолекулярного взаимодействия .

Ø Силами межмолекулярного взаимодействия (ван-дер-ваальсовыми силами ) называют силы электростатического притяжения диполей вещества.

Данный вид взаимодействия атомных и молекулярных частиц отличается рядом особенностей:

1. Межмолекулярное взаимодействие является относительно слабым. Отвечающие ему эффекты на один-два порядка меньше тепловых эффектов образования ковалентных связей. Так, энергия связи для молекулы Н 2 равна 432 кДж/моль, в то время как энтальпия сублимации кристаллического водорода, связанная с межмолекулярным взаимодействием, составляет 2,1 кДж/моль.

2. Межмолекулярное взаимодействие не является специфическим. Ван-дер-ваальсовые силы действуют между самыми разнообразными молекулами, одинаковыми или различными.

3. Силы Ван-дер-Ваальса имеют электростатическую природу, в связи с чем межмолекулярное взаимодействие является ненасыщаемым и ненаправленным.

По происхождению взаимодействующих диполей выделяют три типа сил межмолекулярного взаимодействия:

· Ориентационноевзаимодействие – электростатическое притяжение постоянных диполей вещества, которые ориентируются друг по отношению к другу противоположными полюсами.

Энергия ориентационного взаимодействия двух одинаковых молекул (ориентационный эффект) выражается следующим уравнением:

(9),

где m – дипольный момент молекулы, r – расстояние между молекулами.

· Индукционноевзаимодействие – электростатическое притяжение постоянного и наведенного (индуцированного) диполя.

(10),

где a - поляризуемость молекулы.

· Дисперсионноевзаимодействие – электростатическое притяжение мгновенных микродиполей вещества. Возникновение мгновенных микродиполей вызвано случайным нарушением симметрии распределения электронной плотности в частице, приводящим к возникновению и исчезновению электрических полюсов. При проявлении сил дисперсионного взаимодействия мгновенные микродиполи появляются и исчезают синхронно, ориентируясь таким образом, чтобы частицы притягивались.

(11),

где h - постоянная Планка, n 0 - частота колебаний молекул при температуре абсолютного нуля.

Естественно, что вклад дисперсионного взаимодействия в энергию межмолекулярного взаимодействия увеличивается при возрастании поляризуемости молекулы. Например, для HI энергия дисперсионного взаимодействия (60,47 кДж/моль) составляет 98,5% энергии сил межмолекулярного взаимодействия.

Действие сил Ван-дер-Ваальса приводит к сближению атомных и молекулярных частиц, не связанных химической связью, до некого равновесного состояния, в котором силы притяжения уравновешиваются силами отталкивания. При этом расстояние между атомами можно представить как сумму так называемых ван-дер-ваальсовских радиусов (табл. 3.3).

1.2 Примеры соединений с водородной связью

Во многих случаях, когда имеется сильная связь между молекулами или разными группами одной и той же молекулы, эту связь можно приписать атомам водорода, проявляющим двухвалентный характер. Таковы, например, димеры алифатических кислот, ион дифторида и димер HF, структура которых приведена на рисунке 1.1 .

Рисунок 1.1 Некоторые примеры структур с водородной связью

Водород служит в качестве связующего атома в другом важном классе соединений – бороводородах. Простейшим членом этого семейства является диборан (В 2 Н 6). Однако бороводороды обычно не рассматривают в качестве соединений с водородной связью, так как их нельзя разбить на фрагменты, представляющие собой стабильные молекулы . Рассмотрим эти соединения лишь для того, чтобы сопоставить их с комплексами с водородной связью.

Бороводороды были названы электронодефицитными молекулами (термин электронодефицитный в применении к бороводородам не совсем оправдан, так как во всех случаях электронов достаточно для заполнения всех связывающих молекулярных орбиталей), так как они не имеют достаточно электронов для образования того количества двухэлектронных связей, которое, по-видимому, подразумевается их молекулярной геометрией. Диборан имеет восемь связей В–Н, но только четырнадцать валентных электронов. Расчеты на основе метода молекулярных орбиталей показывают, что концевые связи представляют собой нормальные двухэлектронные связи, а мостиковые связи следует описывать как трехцентровые двухэлектронные связи .

Описание на основе метода молекулярных орбиталей иона дифторида полностью отличается от описания диборана, поскольку для образования мостиковых связей здесь имеются четыре электрона. Равновесная конфигурация молекулы линейная, причем водород находится посредине отрезка F–F. Две наивысшие заполненные молекулярные орбитали образованы в основном 2pσ -орбиталями фтора п ls-орбиталями водорода с некоторой добавкой 2s-орбиталей фтора. Низшая из двух орбиталей имеет симметрию σ g и является связывающей для всех трех атомов. Более высокая орбиталь σ u (ее узел приходится на атом водорода) – разрыхляющая по отношению к атомам фтора. Однако атомы фтора достаточно удалены друг от друга, так что разрыхляющий эффект мал, и орбиталь σ u имеет отрицательную энергию (т. е. связывает электроны), что обусловлено большой электроотрицательностью атома фтора .

Можно преобразовать σ g - и σ u -орбитали в эквивалентные орбитали θ 1 = σ g + σ u и θ 2 = σ g – σ u , локализованные на двух связях F–Н, что демонстрирует отличие от мостиков в бороводородах, орбитали которых не могут быть локализованы на связях .

Ион дифторида не типичен для соединений с водородными связями в том отношении, что атом водорода расположен посредине между двумя тяжелыми атомами. Обычно энергии водородных связей намного меньше, чем для иона дифторида, а водород более тесно связан с одним из атомов, чем с другим, как в димере муравьиной кислоты (рис. 1.1). В действительности геометрия двух компонентов, составляющих комплекс, немного отличается от их геометрии в изолированных состояниях .

Таблица 1.1 Энергии димеризации некоторых газофазных димеров с водородной связью

Димер

Энергия димеризации, кДж/моль -1

29±4
22±6
19±2
9±1
7±1

Обнаружено смещение кислотно-основного равновесия молекулярный комплекс ионная пара вправо при повышении полярности растворителя. Кроме указанных фиксируются и другие структурные и спектроскопические особенности водородных связей, которые используются, с одной стороны, для идентификации последних, а с другой – в расшифровке их электронной природы. Так как водородная связь возникает только в том...

Водородную связь от межмолекулярной. Если спектрально фиксируется образование Н-связей, а признаков ассоциации нет, это верное указание на внутримолекулярный характер водородной связи. Кроме того, межмолекулярная Н-связь (и ее спектральное проявление) исчезает при низкой концентрации вещества в нейтральном растворителе, тогда как внутримолекулярная Н-связь в этих условиях сохраняется. Водородные...

Длин химических связей молекулы растворителя, дипольный момент молекулы растворителя и вязкость, выражается следующим уравнением (2) Коэффициент множественной регрессии составляет КММР = 0,999. В табл. 2 представлены значения энергии водородных связей в различных растворителях, полученные по ур. (1) и (2), в сравнении с литературными данными. Таблица 2 Величины энергии водородных связей...

По их поведению в растворах на две категории: а) вещества, растворы которых обладают ионной проводимостью (электролиты); б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты). К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например спирты, углеводы. Электролитическая диссоциация. ...

Структуру водородной связи мы с вами разберём на примере взаимодействия молекул воды между собой.

Молекула воды является диполем . Это объясняется тем, что атом водорода , связанный с более электроотрицательным элементом кислородом , имеющим , испытывает недостаток электронов и поэтому способен взаимодействовать с атомом кислорода другой молекулы воды.

В результате этого взаимодействия возникает водородная связь (Рис. 2.1 ):

2.1. Механизм образования водородной связи между молекулами воды

Это объясняется тем, что атом водорода , связанный с более электроотрицательным элементом, имеющим неподелённую электронную пару (азотом, кислородом, фтором и др.), испытывает недостаток электронов и поэтому способен взаимодействовать с неподелённой парой электронов другого электроотрицательного атома этой же или другой молекулы.

В результате также возникает водородная связь , которая графически обозначается тремя точками (Рис.):

Рис. 2.2. Механизм образования водородной связи между протоном (Н . δ + ) и более электроотрицательными атомами серы(: S δ - ), кислорода (: O δ - ) и азота (: N δ - )

Эта связь значительно слабее других химических связей (энергия ее образования 10-40 кДж/моль ), и, в основном, определяется электростатическим и донорно-акцепторным взаимодействиями.

Водородная связь может быть как внутримолекулярной , так и межмолекулярной .

2.1.4. Гидрофобные взаимодействия

Прежде, чем рассматривать природу гидрофобного взаимодействия , необходимо ввести понятие «гидрофильных» и «гидрофобных» функциональных групп .

Группы, которые могут образовывать водородные связи с молекулами воды, называются гидрофильными .

К этим группам относятся полярные группы: аминогруппа (- NH 2 ) , карбоксильная (- COOH ), карбонильная группы (- CHO ) и сульфгидрильная группа (- SH ).

Как правило, гидрофильные соединения хорошо растворимы в воде. !!! Это обусловлено тем, что полярные группы способны образовывать водородные связи с молекулами воды .

Появление таких связей сопровождается выделением энергии , поэтому и возникает тенденция к максимальному увеличению поверхности контакта заряженных групп и воды (Рис. 2.3 ):

Рис. 2.3. Механизм образования гидрофобных и гидрофильных взаимодействий

Молекулы или части молекул, неспособные образовывать водородные связи с водой называются гидрофобными группами .

К этим группам относятся алкильные и ароматические радикалы, которые неполярны и не несут электрического заряда.

Гидрофобные группы плохо или вовсе не растворимы в воде.

Это объясняется тем, что атомы и группы атомов , входящие в состав гидрофобных групп, являются электронейтральными и (поэтому) не могут образовывать водородных связей с водой.

!!! Гидрофобные взаимодействия возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды.

В результате этого молекулы воды вытесняются на поверхность гидрофильных молекул (Рис. 2.3 ).

2.1.5. Ван-дер-ваальсовы взаимодействия.

В молекулах существуют также весьма слабые и короткодействующие силы притяжения между электрически нейтральными атомами и функциональными группами.

Это так называемые ван-дер-ваальсовые взаимодействия .

Они обусловлены электростатическим взаимодействием между отрицательно заряженными электронами одного атома и положительно заряженным ядром другого атома.

Так как ядра атомов экранированы окружающими их собственными электронами от ядер соседних атомов, то возникающие между различными атомами ван-дер-ваальсовы взаимодействия весьма невелики .

Все эти типы взаимодействий принимают участие в формировании , поддержании и стабилизации пространственной структуры (конформации ) белковых молекул (Рис. 2.4 ):

Рис. 2.4. Механизм образования ковалентных связей и слабых нековалентных взаимодействий: 1 - электро-статические взаимодействия; 2 – водородные связи; 3 – гидрофобные взаимодействия, 4 – дисульфидные связи

Силы, которые способствуют формированию пространственной структуры белков и удерживающие её в стабильном состоянии , являются очень слабыми силами . Энергия этих сил на 2-3 порядка меньше энергии ковалентных связей. Они действуют между отдельными атомами и группами атомов.

Однако, огромное число атомов в молекулах биополимеров (белков), приводит к тому, что суммарная энергия этих слабых взаимодействий становится сравнима с энергией ковалентных связей.

5. Ионная и металлическая связь. Водородная связь. Валентность

5.3. Водородная связь

К особому виду межмолекулярного взаимодействия относится водородная связь, которая бывает межмолекулярной и внутримолекулярной.

Межмолекулярная водородная связь - это связь между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом другой молекулы.

Внутримолекулярная водородная связь - это связь между положительно поляризованным атомом водорода и отрицательно заряженным другим атомом одной и той же молекулы.

В общем виде образование водородной связи можно представить схемой

где водородная связь, как это принято, показана тремя точками.

Атомы А и В могут быть любыми, но их электроотрицательность должна быть меньше, чем у атомов X и Y. Атомы X и Y - это атомы, электроотрицательность которых гораздо больше, чем у водорода. Как правило, это атомы О, F и N. Таким образом, могут образоваться водородные связи типа:

O–H⋅⋅⋅O (N, F); N–H⋅⋅⋅O (N, F); F–H⋅⋅⋅O (N, F).

Атомы X и Y могут быть одинаковыми (F–H δ+ ⋅⋅⋅F δ− –H) или разными (H 2 N–H⋅⋅⋅OH 2), поэтому водородная связь образуется как между одинаковыми, так и между разными молекулами. Например, межмолекулярная водородная связь образуется между молекулами: воды, карбоновых кислот (рис. 5.3, а , б ), спиртов, фтороводорода и аммиака, но не образуется между молекулами алканов, альдегидов, кетонов и бензола. Водородная связь образуется между молекулами аммиака и воды, воды и спирта, воды и альдегида (рис. 5.3, в ).

Рис. 5.3. Образование межмолекулярной водородной связи между молекулами:

А - воды; б - уксусной кислоты СН 3 СООН; в - ацетальдегида СН 3 СНО и воды

В случае внутримолекулярной водородной связи между собой связываются различные части одной и той же молекулы.

Примеры образования внутримолекулярной водородной связи показаны на рис. 5.4.


Рис. 5.4. Образование внутримолекулярной водородной связи в молекуле:

А - 2-гидробензальдегида; б - двухатомного спирта этиленгликоля; в - дигидроксибензола (двухатомного фенола); г - 2-аминофенола

Для образования внутримолекулярных водородных связей необходимо, чтобы функциональные группы, содержащие атомы H и X, находились рядом (на сравнительно небольшом расстоянии); в противном случае внутримолекулярная водородная связь не образуется. Например, внутримолекулярная водородная связь не образуется в молекулах, строение которых показано ниже (отметим, что бензольное кольцо плоское и не может изгибаться):


В случае данных молекул образуется межмолекулярная водородная связь.

Соединения с внутримолекулярной связью, как правило, менее растворимы, чем их изомеры; обладают более низкими температурами плавления и кипения; имеют меньшую вязкость в жидком состоянии, так как такие молекулы мало связаны с соседними молекулами. Например, среди трех изомерных нитрофенолов о -нитрофенол хуже растворяется в воде и имеет более низкую температуру кипения, так как только в этой молекуле присутствует внутримолекулярная водородная связь.

Органические кислоты, у которых кислород карбоксильной группы участвует в образовании внутримолекулярной водородной связи, являются более сильными кислотами, чем их изомеры. Водородная связь облегчает отрыв протона из-за перераспределения электронной плотности. Так, среди трех изомеров гидробензойных кислот наиболее сильной является салициловая (первая слева).


Внутримолекулярная водородная связь образуется в белках между группами NH и CO соседних витков спирали, обеспечивая тем самым устойчивость вторичной структуры белка:

Отметим, что водородная связь присутствует и в кислых солях.

Одна из составляющих при образовании водородной связи - электростатическое диполь-дипольное притяжение положительно заряженного атома водорода и отрицательно заряженного атома другой или той же самой молекулы: большая электроотрицательность атомов X и Y (F, О, N) обусловливает возникновение сравнительно больших по величине зарядов на атомах Н и Y и, соответственно, образование водородной связи. Кроме того, образованию водородной связи способствуют малые размеры атома Н, что позволяет атомам подходить достаточно близко. Другая составляющая водородной связи обеспечивается частичным образованием ковалентной связи по донорно-акцепторному механизму, так как атом Y обычно имеет неподеленные пары электронов, а на атоме Н из-за сильной поляризации электронной плотности под влиянием сильноэлектроотрицательного атома X частично освобождается 1s атомная орбиталь (рис. 5.5).

Рис. 5.5. Образование водородной связи между молекулами воды и аммиака по донорно-акцепторному механизму

Благодаря ковалентной составляющей водородная связь направленная и насыщаемая, что во многом определяет строение веществ в конденсированном состоянии. Энергия водородной связи значительно меньше энергии химической связи и составляет 5–40 кДж/моль. Особой прочностью отличаются водородные связи −H⋅⋅⋅F− с участием наиболее электроотрицательного атома фтора. Связь в ассоциатах (HF) 2 настолько прочная, что фтороводородная кислота практически полностью находится в димеризованном состоянии и способна образовывать кислые соли (см. 12.5).

Водородная связь в несколько раз сильнее обычного межмолекулярного взаимодействия и влияет на температуры кипения и плавления веществ, повышая эти константы. Например, чтобы вещество закипело, т.е. перешло из жидкого состояния в газообразное, необходимо разорвать связи между молекулами (но не в самих молекулах!). Понятно, что с повышением прочности межмолекулярных связей из-за образования водородных связей возрастает и температура кипения.

Классической иллюстрацией сказанному служит зависимость температур кипения от молярной массы для водородных соединений неметаллов IVA−VIII-групп (рис. 5.6). В прямо пропорциональную зависимость температуры кипения от массы молекул не укладываются вещества, между молекулами которых образуется водородная связь: вода, аммиак и фтороводород. Для соединений IVA-группы температура кипения с ростом молярной массы закономерно повышается, так как между молекулами водородных соединений элементов данной группы (CH 4 , SiH 4 , GeH 4 и SnH 4) водородные связи не образуются.

Рис. 5.6. Температуры кипения некоторых водородных соединений, элементов VIIA−IVА-групп

Образование водородной связи с молекулами воды повышает растворимость веществ. Например, растворимость этанола C 2 H 5 OH в воде гораздо выше изомерного ему диметилового эфира (CH 3) 2 O, так как только в случае спирта образуются водородные связи с водой.

В случае воды образование водородных связей объясняет не только ее аномально высокие температуры кипения и плавления, но и высокие теплоемкость и диэлектрическую проницаемость, а также аномальную зависимость плотности воды от температуры: плотность твердого льда меньше плотности жидкой воды, поэтому зимой водоемы не промерзают до дна. Благодаря высокой теплоемкости (вода долго нагревается и медленно остывает) вода активно участвует в формировании климата на Земле, перенося теплоту на очень большие расстояния. Из-за высокой диэлектической проницаемости и полярности молекул вода является хорошим ионизирующим растворителем (в воде вещества легко распадаются на ионы).

Пример 5.1. Как изменяется температура кипения в ряду веществ, формулы которых: H 2 , O 2 , Cl 2 ?

Решение. В этом ряду молярная масса веществ последовательно возрастает, поэтому температура кипения повышается.

Ответ : повышается.

Пример 5.2. Укажите ряд, в котором температура кипения веществ повышается:

1) O 3 , O 2 , H 2 O; 3) O 2 , O 3 , H 2 O;2) H 2 O, O 3 , O 2 ; 4) H 2 O, O 2 , O 3 .

Решение. Наибольшую температуру кипения из-за образования водородных связей имеет вода. В случае O 2 и O 3 выше t кип озона (молекулы O 3 имеют большую массу). Искомый ряд - ряд 3).

Ответ : 3).

Пример 5.3. Укажите названия веществ, в молекулах которых образуется внутримолекулярная водородная связь: а) фенол; б) 2-гидроксибензойная кислота; в) ацетальдегид; г) 2-нитрофенол.

Решение. Изобразим структурные формулы молекул указанных веществ:

а) б) в) г)

Видим, что внутримолекулярная водородная связь образуется в молекулах 2-гидроксибензойной кислоты и 2-нитрофенола.

Ответ : б), г).

Промежуточный характер межу межмолекулярным взаимодействием и ковалентной связью имеет водородная связь. Если водород соединен с сильно электроотрицательным элементом (F, O, N) он может образовывать еще одну дополнительную связь – водородную. Хотя энергия водородной связи мала (8-40 кДж/моль), эту связь следует считать разновидностью ковалентной связи, т.к. она обладает свойствами направленности и насыщаемости. Механизм образования водородной связи сводится в электростатическому и донорно-акцепторным взаимодействиям (донор электронной пары – атом электроотрицательного элемента; акцептор – протон (Н +).

Рассмотрим возникновение водородной связи в молекуле фтороводорода. В ней электронная пара смещена к атому фтора, т.е. атом водорода поляризован положительно, а фтор – отрицательно. Благодаря тому, что фтор сильно электроотрицателен, электронная пара практически полностью смещена к нему и ион водорода приобретает пустую, вакантную орбиталь, которая с неподеленной парой фтора образует донорно-акцепторную связь. Водородную связь принято обозначать точками. Обращаю внимание, что водородная связь это связь между молекулами , а не атомами в молекуле.

Благодаря водородным связям фтороводородная кислота, в отличие от соляной, является слабой кислотой и образует соли типа KHF 2 . Водородная связь играет большую роль в процессах растворения, т.к. растворимость зависит и от способности вещества образовывать водородные связи с растворителем (водой).

Водородная связь в молекуле воды

Пример. Серная кислота и фтороводород растворяется в воде неограниченно, а хлороводород обладает ограниченной растворимостью, что не позволяет получать соляную кислоту с концентрацией выше 37%. Объяснить это различие.

Решение . Серная кислота содержит связь О–Н, фтороводород Н–F , которые способны образовывать водородные связи с водой, которая тоже имеет связь О–Н, и растворение происходит практически неограниченно.

Виды химической связи

К основным характеристикам химической связи, дающим информацию о структуре молекулы и ее прочности, относятся валентный угол, длина, полярность и энергия связи.

Длиной связи называют расстояние между центрами атомов, образующих данную связь (межъядерное расстояние). Ее определяют экспериментально при помощи различных физико-химических методов. Длина связи обусловлена размером реагирующих атомов и степенью перекрывания их электронных облаков, которая зависит от типа химической связи. Надо обратить внимание, что длина связи всегда меньше суммы радиусов элементов, т.к. происходит перекрывание атомных орбиталей, а не их касание.

Длина связи от этана к ацетилену уменьшается, т.к. увеличивается кратность (порядок) связи от одинарной к тройной. Чем больше кратность связи, тем меньше длина связи.

В ряду галогеноводородов длина связи Н‑Г имеет следующие значения (в пм, 1 пм = 10 -12 м):

Другой характеристикой химической связи, отражающей геометрическое строение, является валентный угол.

Он зависит от природы атомов и характера химической связи.

Количество энергии, выделяющейся при образовании химической связи, называется энергией связи. Эта величина является характеристикой прочности связи. Ее выражают в кДж/моль образующегося вещества.

Полярные молекулы являются диполями , т.е. системами, состоящими из двух равных по величине, но противоположных по знаку зарядов (q+ и q‑), находящихся на расстоянии l (длина диполя) друг от друга. Полярность молекулы оценивается значением электрического момента диполя =
. Электрический момент диполя представляет собой векторную сумму моментов всех связей и несвязывающих электронных пар в молекуле. Результат сложения зависит от структуры молекулы. Молекула СО 2 имеет линейное строение и, несмотря на полярность связи С=О, вследствие взаимной компенсации электрических моментов диполя, молекула СО 2 неполярна (=0). В угловой молекуле воды полярные связи О-Н располагаются под углом 104,5, взаимной компенсации не происходит и молекула воды полярна (=0,6110 -29 Клм).

error: