Хромосомы состоят из молекулы. Хромосомы бактерий линейные

ХРОМОСОМЫ (греческий chroma цвет, окраска + soma тело) - главные структурно-функциональные элементы клеточного ядра, содержащие расположенные в линейном порядке гены и обеспечивающие хранение, воспроизводство генетической информации, а также начальные этапы ее реализации в признаки; изменяют свою линейную структуру в клеточном цикле. Термин «хромосомы» предложен Вальдейером (W. Waldeyer) в 1888 году из-за палочковидной формы и интенсивного окрашивания этих элементов основными красителями в период деления клетки.

Термин «хромосома» в полном его значении применим к соответствующим ядерным структурам клеток многоклеточных эукариотных организмов (см.). В ядре таких клеток хромосом всегда несколько, они составляют хромосомный набор (см.). В соматических клетках хромосомы парны, так как происходят от двух родительских (диплоидный набор хромосом), в зрелых половых клетках содержится одинарный (гаплоидный) набор хромосом. Каждый биологический вид характеризуется постоянным числом, размерами и другими морфологическими признаками хромосом (см. Кариотип). У разнополых организмов хромосомный набор включает две хромосомы, несущие гены, определяющие пол особи (см. Ген , Пол), которые называют половыми, или гоносомами, в противоположность всем остальным, именуемым аутосомами. У человека пара половых хромосом составлена: у женщин из двух X-хромосом (XX набор), а у мужчин - из X и Y-хромосом (XY набор). Поэтому в зрелых половых клетках - гаметах у женщин содержится только X-хромосома, тогда как у мужчин половина сперматозоидов содержит X-хромосому, а другая - Y-хромосому.

История

Первые наблюдения хромосом в ядре клетки, выполненные в 70-х годах 19 века И. Д. Чистяковым, О. Гертвигом, Страсбургером (E. Strasburger), положили начало цитологическому направлению в изучении хромосом. До начала 20 века это направление было единственным. Применение светового микроскопа позволило получить сведения о поведении хромосом в митотическом и мейотическом делениях (см. Мейоз , Митоз), факты о постоянстве числа хромосом у данного вида, специальных типах хромосом. В 20-40-х годах 20 века преимущественное развитие получило сравнительное морфологическое изучение хромосом у разных видов организмов, включая человека, с целью выяснения общих принципов их организации, особенностей индивидуальных хромосом и изменений их в процессе эволюции. В изучение этой проблемы особый вклад внесли отечественные ученые С. Г. Навашин, Г. А. Левитский, Л. Н. Делоне, П. И. Живаго, А. Г. Андрес, М. С. Навашин, А. А. П рокофъева-Бельговская, а также зарубежные - Хейтц (E. Heitz), Дарлингтон (С. D. Darlington) и др. С 50-х годов для исследования хромосом стал использоваться электронный микроскоп. Началось изучение морфологических изменений хромосом в процессе их генетического функционирования. В 1956 году Тио (H. J. Tjio) и Леван (A. Levan) окончательно установили число хромосом у человека, равное 46, описали их морфологические признаки в метафазе митоза. Значительный прогресс в изучении хромосом был достигнут в 70-х годах после разработки различных методов их окраски, позволивших выявить неоднородность структуры хромосом по длине в мета фазе деления клеток.

Сопоставление поведения хромосом в мейотическом делении с закономерностями наследования признаков (см. Менделя законы) положило начало цитогенетическим исследованиям. В конце 19 - начале 20 века Сеттоном (W. Sutton), Бовери (Th. Boveri), Уилсоном (Е. В. Wilson) были заложены основы хромосомной теории наследственности (см.), согласно которой гены локализованы в хромосомах и поведение последних при созревании гамет и их слиянии в момент оплодотворения объясняет законы передачи признаков в поколениях. Теория получила окончательное обоснование в цитогенетических экспериментах, проведенных на дрозофиле (см.) Т. Морганом и его учениками, которые доказали, что каждая хромосома есть группа генов, сцепленно наследуемых и расположенных в линейном порядке, что в мейозе осуществляется рекомбинация генов (см. Рекомбинация) гомологичных (идентичных) хромосом.

Изучение биохимической природы хромосом, начатое в 30-40-е годы 20 века, первоначально основывалось на цитохимическом качественном и количественном определении содержания ДНК, РНК и белков в ядре. С 50-х годов для этих целей стали применять фото- и спектрометрию (см. Спектрофотометрия), рентгеноструктурный анализ (см.) и другие физико-химические методы.

Физико-химическая природа хромосом

Физико-химическая природа хромосом зависит от сложности организации биологического вида. Хромосома эукариот состоит из молекулы дезоксирибонуклеиновой кислоты (см.), гистоновых и негистоновых белков (см. Гистоны), а также рибонуклеиновой кислоты (см.). Основным химическим компонентом хромосомы, заключающим в структуре своей молекулы генетическую информацию, является ДНК. В естественных условиях в отдельных участках хромосомы ДНК может быть свободной от структурных белков, однако в основном она существует в виде комплекса с гистонами, причем как и в интерфазе, так и в метафазе весовое отношение ДНК/гистон составляет единицу. Содержание кислых белков в хромосомах варьирует в зависимости от их активности и степени конденсации в клеточном цикле. В хроматине (см.) интерфазного ядра и на любой стадии митотической конденсации ДНК существует в комплексе с гистонами, и взаимодействие именно этих молекул создает элементарные структурные частицы хроматина - нуклеосомы. В нуклеосоме ее центральную часть составляют 8 молекул гистонов четырех типов (по 2 молекулы от каждого типа). Это гистоны Н2А, Н2В, НЗ и Н4, взаимодействующие между собой, по-видимому, С-концевыми участками молекул. N-концевые участки гистоновых молекул взаимодействуют с молекулой ДНК таким образом, что последняя оказывается накрученной на гистоновый остов, делая два витка на одной его стороне и один на другой. На одну нуклеосому приходится около 140 пар оснований ДНК. Между соседними нуклеосомами имеется варьирующий по длине отрезок ДНК (10-70 пар оснований). Когда он выпрямлен, ДНК принимает вид нити с бусинками. Если отрезок находится в сложенном состоянии, нуклеосомы тесно прилегают друг к другу, формируя фибриллу диаметром 10 нм. Строение из нуклеосомных частиц является принципом организации хроматина (см.) как в интерфазной, так и в метафазной хромосоме.

Индивидуально различимые хромосомы формируются ко времени клеточного деления, митоза или мейоза, в результате прогрессивно нарастающей конденсации хромосом. В профазе митотического деления хромосомы видны в световом микроскопе в виде длинных и переплетенных нитей, поэтому индивидуальные хромосомы на всем протяжении неразличимы. В профазе первого мейотического деления хромосомы претерпевают сложные специфические морфологические преобразования, связанные главным образом с конъюгацией гомологичных хромосом (см. Конъюгация хромосом) и генетической рекомбинацией (обменом участками) между ними. В пахитене (когда заканчивается конъюгация) особенно показательно чередование хромомер по длине хромосом, причем хромомерный рисунок специфичен для каждой хромосомы и меняется по мере конденсации. Многие хромосомы в оогенезе и Y-хромосома в сперматогенезе обладают высокой транскрипционной активностью. У некоторых видов организмов такие хромосомы получили название «ламповых щеток». Они состоят из оси, построенной из хромомер и межхромомерных участков, и многочисленных боковых петель - деконденсированных хромомер, находящихся в состоянии генетического функционирования (транскрипции).

В метафазе деления клетки хромосомы имеют наименьшую длину и их легко исследовать, поэтому описание индивидуальных хромосом, как и всего их набора в клетке, дают применительно к их состоянию в этой фазе. Размеры метафазных хромосом у одного и того же вида организмов сильно различаются: хромосомы размерами в доли микрона имеют точечный вид, при длине более 1 мкм они выглядят как палочковидные тела. Обычно это раздвоенные по длине образования, состоящие из двух сестринских хроматид (рис. 2, 3), поскольку в метафазе хромосомы редуплицированы.

Индивидуальные хромосомы набора различаются между собой по длине и другим морфологическим признакам. Методы, применявшиеся до 70-х годов, обеспечивали равномерное окрашивание хромосомы по ее длине. Тем не менее такая хромосома в качестве обязательного элемента структуры имеет первичную перетяжку - участок, где обе хроматиды сужаются, видимо не отделяясь одна от другой, и плохо окрашиваются. Этот район хромосомы называется центромерой, он содержит специализированную структуру - кинетохор, который участвует в формировании нитей веретена деления хромосом. По соотношению размеров лежащих по обе стороны от первичной перетяжки хромосомных плеч хромосомы подразделяются на три типа: метацентрические (со срединно расположенной перетяжкой), субметацентрические (перетяжка смещена от середины), акроцентрические (центромера расположена близко к концу хромосомы, рис. 3). У человека имеются все три типа хромосом. Концы хромосом называют теломерами. По длине хромосом с той или иной степенью постоянства могут встречаться не имеющие отношения к центромере, так называемые вторичные перетяжки. Если они располагаются близко к теломере, отделяемый перетяжкой дистальный участок хромосомы называют спутником, а перетяжку - спутничной (рис. 2). У человека десять со вторичной перетяжкой хромосом, все они являются акроцентрическими, спутники локализованы в коротком плече. Некоторые вторичные перетяжки содержат рибосомные гены и называются ядрышкообразующими, поскольку благодаря их функционированию в продукции РНК в интерфазном ядре формируется ядрышко (см.). Другие вторичные перетяжки образуются гетерохроматиновыми районами хромосом; у человека из таких перетяжек наиболее выражены околоцентромерные перетяжки в 1, 9 и 16-й хромосомах.

Первоначальный метод использования красителя Гимзы и других хромосомных красителей давал равномерную окраску по всей длине хромосомы. С начала 70-х годов разработан ряд методов окраски и обработки метафазных хромосом, которые позволили обнаружить дифференцированность (деление на светлые и темные полосы) линейной структуры каждой хромосомы по всей ее длине: Q-окраска (Q - от английского quinacrine акрихин), получаемая с помощью акрихина, акрихиниприта и других флюорохромов; G-окраска (G - от фамилии Giemsa), получаемая с помощью красителя Гимзы (см. Романовского - Гимзы метод) после инкубации препаратов хромосом в специальных условиях; R-окраска (R - от англ. reverse обратный; хромосомы окрашиваются обратно G-окраске). Тело хромосомы оказывается подразделенным на сегменты разной интенсивности окрашивания или флюоресценции. Число, положение и размер таких сегментов специфичны для каждой хромосомы, поэтому любой хромосомный набор может быть идентифицирован. Другие методы позволяют дифференциально окрашивать отдельные специфические районы хромосом. Возможно избирательное окрашивание красителем Гимзы гетерохроматиновых районов хромосомы (С-окраска; С - от centromere центромера), располагающихся рядом с центромерой - С-сегментов (рис. 4). У человека С-сегменты обнаружены в околоцентромерном районе всех аутосом и длинном плече Y -хромосомы. Гетерохроматиновые районы варьируют по величине у разных индивидуумов, обусловливая полиморфизм хромосом (см. Хромосомный полиморфизм). Специфические окраски позволяют выявить в метафазных хромосомах функционировавшие в интерфазе ядрышкообразующие районы, а также кинетохоры.

На электронномикроскопическом уровне основной ультраструктурой единицей интерфазного хроматина при просвечивающей электронной микроскопии (см.) является нить диаметром 20-30 нм. Плотность упаковки нитей различна в участках плотного и диффузного хроматина.

Метафазная хромосома на срезе в просвечивающем электронном микроскопе представляется равномерно заполненной фибриллами 20-30 нм в поперечнике, которые в зависимости от плоскости сечения имеют вид округлых, овальных или удлиненных образований. В профазе и телофазе в хромосоме можно обнаружить более толстые нити (до 300 нм). При электронной микроскопии поверхность метафазной хромосомы представлена хаотично уложенными многочисленными фибриллами разного диаметра, видимыми, как правило, на коротком отрезке (рис. 5). Преобладают нити диаметром 30-60 нм.

Изменчивость хромосом в онтогенезе и эволюции

Постоянство числа хромосом в хромосомном наборе и структуры каждой хромосомы - непременное условие нормального развития в онтогенезе (см.) и сохранения биол. вида. В течение жизни организма могут происходить изменения числа отдельных хромосом и даже их гаплоидных наборов (геномные мутации) или структуры хромосом (хромосомные мутации). Необычные варианты хромосом, обусловливающие уникальность хромосомного набора индивидуума, применяются в качестве генетических маркеров (маркерных хромосом). Геномные и хромосомные мутации играют важную роль в эволюции биол. видов. Данные, полученные при изучении хромосом, вносят большой вклад в систематику видов (кариосистематику). У животных одним из главных механизмов эволюционной изменчивости является изменение числа и структуры отдельных хромосом. Важное значение имеет также изменение содержания гетерохроматина в отдельных или нескольких хромосомах. Сравнительное изучение хромосом человека и современных человекообразных обезьян позволило на основании сходства и различия индивидуальных хромосом установить степень филогенетического родства этих видов и смоделировать кариотип их общего ближайшего предка.

Бочков Н. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Дарлингтон С. Д. и Ла Кур Л. Ф. Хромосомы, Методы работы, пер. с англ., М., 1980, библиогр.; Захаров А. Ф. Хромосомы человека (проблемы линейной организации;, М., 1977, библиогр.; Захаров А. Ф. и др. Хромосомы человека, Атлас, М., 1982; Кикнадзе И. И. Функциональная организация хромосом, Л., 1972, библиогр.; Основы цитогенетики человека, под ред. А. А. Прокофьевой-Бельговской, М., 1969: Суонсо н К., Мерц Т. и Янг У. Цитогенетика, пер. с англ., М., 1969; Cell biology, A comprehensive treatise, ed. by L. Goldstein a. D. M. Prescott, p. 267, N. Y. a. o., 1979; Seuanez H. N, The phylogeny of human chromosomes, v. 2, B. a. o. 1979; Sharm a A. K. a. Sharma A. Chromosome techniques, L. a. o., 1980; ThermanE. Human chromosomes, N. Y. a. o., 1980.

А. Ф. Захаров.

Весь генетический материал клетки находится в упакованном виде в относительно ограниченном объеме . У бактерий генетический материал находится в виде нуклеоида, который образует в клетке дискретную массу. В интерфазном ядре эукариотической клетки генетический материал упакован в массе хроматина.

Упаковка хроматина характеризуется гибкостью и на протяжении клеточного цикла меняется. Во время деления (митоза или мейоза), когда становятся видимыми отдельные хромосомы, интерфазный хроматин становится упакованным более плотно.

Хромосомы представляют собой форму изоляции генетического материала при клеточном делении. Характерной структурной особенностью, благодаря которой это достигается, является центромера, представляющая собой перетяжку на теле хромосомы, видимую в световом микроскопе. При достаточно высоком разрешении видно, что центромера включает кинетохор, структуру, посредством которой она прикрепляется к микротрубочкам.

Обычно эукариотические хромосомы состоят из очень длинных линейных молекул ДНК, и еще одной их характерной особенностью является наличие теломеры, которая стабилизирует концы хромосом и достраивается по специальному механизму, в обход трудности репликации концов линейной ДНК.

ДНК упакована с высокой плотностью. Для нуклеоида бактерий она составляет около 10 мг/мл, для ядра клетки эукариот порядка 100 мг/мл, а для головки фага Т4 более 500 мг/мл. Растворы такой концентрации представляют собой вязкий гель, и по непонятной причине столь высокая концентрация необходима для проявления белками способности находить сайты связывания на ДНК. Различные процессы, протекающие с участием ДНК, например репликация и транскрипция, должны осуществляться в очень ограниченном пространстве.

Организация ядерного материала должна соответствовать переходам от неактивного к активному состоянию хроматина. Рисунок ниже иллюстрирует сильные различия в размере генома и в содержании ДНК хромосом некоторых организмов.

Длина линейной молекулы ДНК существенно превышает размер того региона, в котором она находится. Плотно упакованная структура образуется в результате связывания ДНК с основными белками. Положительно заряженные группы белков нейтрализуют отрицательно заряженные группы в ДНК. Организация нуклеопротеидного комплекса определяется взаимодействием белков с ДНК, в результате чего образуется плотно спирализованная структура.

Таким образом, в отличие от распространенной картинки, на которой ДНК представлена в виде протяженной двойной спирали, она, как правило, подвержена структурным деформациям сгиба или скручивания, обеспечивающим образование более компактной структуры.

Большая часть хроматина обладает довольно рыхлой структурой; он называется эухроматин и содержит активные гены. Отдельные участки хроматина упакованы более плотно; они соответствуют генетически неактивному гетерохроматину.

Какова общая структура хроматина и какие существуют различия между активными и неактивными последовательностями? Высокая плотность упаковки генетического материала позволяет предполагать, что ДНК не может быть прямо упакована в конечную структуру хроматина. Должна существовать определенная иерархия ее пространственной организации. Основной вопрос заключается в специфичности упаковки. Следует ли скручивание ДНК определенному общему принципу или же происходит по разному в каждой индивидуальной копии генома? Каким образом меняется вид упаковки при репликации или транскрипции сегмента ДНК?

Основная структурная единица хроматина во всех эукариотических клетках одна и та же. Нуклеосома содержит примерно 200 пн ДНК и является октамером, состоящим из небольших основных белков, имеющим форму бусины. Эти белки представляют собой гистоны. Они образуют внутреннее ядро частицы, а ДНК находится на ее поверхности. В интерфазном ядре и в митотических хромосомах нуклеосомы являются постоянным компонентом эу- и гетерохроматина.

Нуклеосомы обеспечивают начальный уровень организации хроматина . Они обеспечивают упаковку молекулы длиной 67 нм в структуру, диаметром 11 нм. Компоненты нуклеосом и их строение хорошо изучены. Последовательность нуклеосом, расположенная линейно образует «10-нм нуклеосомную нить».

Следующий уровень организации представляет собой скручивание последовательности нуклеосом в спиральные витки . При этом создается фибрилла диаметром около 30 нм; она присутствует в интерфазном хроматине и в митотических хромосомах. В результате плотность упаковки увеличивается в 6-7 раз на ед. длины. Упаковка в такую структуру требует участия дополнительных белков и исследована недостаточно.

Окончательная плотность достигается на третьем уровне организации , включающем упаковку самой 30-нм фибриллы. Этот уровень приводит к 50-кратно-му увеличению плотности упаковки в эухроматине по сравнению с упаковкой в 30-нм фибрилле. Эухроматин периодически упаковывается в митотические хромосомы, при этом плотность упаковки возрастает в 5-10 раз. Обычно плотность упаковки гетерохроматина такая же, как в митотических хромосомах.

В хроматине содержится примерно в два раза больше белка, чем ДНК . Примерно половина всего количества белка сосредоточена в нуклеосомах. Количество РНК составляет менее 10% от содержания ДНК. Большая часть РНК представлена вновь образованными транскриптами, еще связанными с матричной ДНК.

Изменения структуры хроматина обеспечиваются связыванием дополнительных или модификациями существующих белков. Репликация и транскрипция требуют раскручивания ДНК, и, таким образом, должны включать разупаковку структуры, которая позволяет соответствующим ферментам работать на ДНК. Вероятно, это сопровождается изменениями на всех уровнях организации.

Все белки хроматина , за исключением гистонов, относятся к негистоновым белкам. По сравнению с гистонами, в разных тканях и организмах эти белки характеризуются более разнообразным составом, и в хроматине их содержится меньше, чем гистонов. Они также составляют более многочисленную группу, так что любой индивидуальный негистоновый белок присутствует в количествах гораздо меньших, чем любой гистон.

История открытия хромосом

Рисунок из книги В. Флемминга, изображающий разные стадии деления клеток эпителия саламандры (W. Flemming. Zellsubstanz, Kern und Zelltheilung. 1882 г.)

В разных статьях и книгах приоритет открытия хромосом отдают разным людям, но чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем - немецкого анатома В. Флеминга . Однако справедливее было бы сказать, что он не открыл хромосомы, а в своей фундаментальной книге "Zellsubstanz, Kern und Zelltheilung" (нем.) собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Генрихом Вальдейером в 1888 году, «хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами.

Сейчас сложно сказать, кто сделал первое описание и рисунок хромосом. В 1872 году швейцарский ботаник Карл фон Нэгили опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии (Lilium tigrinum ) и традесканции (Tradescantia ). Однако его рисунки не позволяют однозначно утверждать, что К. Нэгили видел именно хромосомы. В том же 1872 году ботаник Э. Руссов привёл свои изображения деления клеток при образовании спор у папоротника из рода ужовник (Ophioglossum ) и пыльцы лилии (Lilium bulbiferum ). На его иллюстрациях легко узнать отдельные хромосомы и стадии деления. Некоторые же исследователи полагают, что первыми увидел хромосомы немецкий ботаник Вильгельм Гофмайстер задолго до К. Нэгили и Э. Руссова, ещё в 1848-1849 годах. При этом ни К. Нэгили, ни Э. Руссов, ни тем более В. Гофмейстер не осознавали значения того, что видели.

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902-1903 годах У. Сеттон (Walter Sutton ) независимо друг от друга первыми выдвинули гипотезу о генетической роли хромосом. Т. Бовери обнаружил, что зародыш морского ежа Paracentrotus lividus может нормально развиваться только при наличии хотя бы одного, но полного набора хромосом. Также он установил, что разные хромосомы не идентичны по своему составу. У. Сеттон изучал гаметогенез у саранчового Brachystola magna и понял, что поведение хромосом в мейозе и при оплодотворении полностью объясняет закономерности расхождения менделевских факторов и образования их новых комбинаций.

Экспериментальное подтверждение этих идей и окончательное формулирование хромосомной теории было сделано в первой четверти XX века основателями классической генетики, работавшими в США с плодовой мушкой (D.melanogaster ): Т. Морганом , К. Бриджесом (C.B.Bridges ), А. Стёртевантом (A.H.Sturtevant ) и Г. Мёллером . На основе своих данных они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Эти выводы были опубликованы в 1915 году в книге «The mechanisms of mendelian heredity» (англ.).

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине .

Хромосомы эукариот

Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков - H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.

Первичная перетяжка

Хромосомная перетяжка (X. п.), в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 9, 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода .

Спутники (сателлиты)

Сателлит - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка ) - специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема - это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции , термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

  • паранемическую (элементы спирали легко разъединить);
  • плектонемическую (нити плотно переплетаются).

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

  • Генные (точковые) мутации (изменения на молекулярном уровне);
  • Аберрации (микроскопические изменения, различимые при помощи светового микроскопа):

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла . Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов .

Политенные хромосомы

Впервые обнаружены Бальбиани в -го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз , кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щёток

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Хромосомы человека

В каждой ядросодержащей соматической клетке человека содержится 23 пары линейных хромосом, а также многочисленные копии митохондриальной ДНК . В нижеприведённой таблице показано число генов и оснований в хромосомах человека.

Хромосома Количество генов Всего оснований Секвенированых оснований
4 234 247 199 719 224 999 719
1 491 242 751 149 237 712 649
1 550 199 446 827 194 704 827
446 191 263 063 187 297 063
609 180 837 866 177 702 766
2 281 170 896 993 167 273 993

Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

История открытия хромосом

Еще в середине позапрошлого XIX века многие биологи изучая в строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» – окраска и «somo» – тело.

Хромосомная теория наследственности

Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности – генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.

В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

Строение хромосом

Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

Формы и виды хромосом

Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

  • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
  • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
  • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

Функции хромосом

Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

Набор хромосом

Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у – 48, а хромосомный набор человека составляет 46 хромосом.

В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

Хромосомный набор человека

Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара – половых хромосом – разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

Генетические болезни, связанные с хромосомами

Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

Хромосомы, видео

И в завершение интересно образовательное видео про хромосомы.


Эта статья доступна на английском языке – .


В 1989 г. была описана у спирохеты Borrelia burgdorfery линейная бактериальная хромосома, которую идентифицировали с помощью электрофореза в импульсном электрическом поле. Размер генома составлял всего 960 т.п.о. Было обнаружено, что линейная и кольцевая хромосомы сосуществуют одновременно у Agrobacterium tumefaciens, а у грамположительных бактерий рода Streptomyces, обладающих одним из самых больших бактериальных геномов (около 8000 т.п.о.), имеется одна линейная хромосома. Представитель актиномицетов Rhodococcus fascians также, по-видимому, обладает линейной хромосомой. Линейные хромосомы у бактерий часто сосуществуют с линейными плазмидами и широко распространены в природе.

Линейные хромосомы и плазмиды наиболее хорошо изученных бактерий рода Streptomyces содержат концевые инвертированные повторы ( TIRs - terminal inverted repeats), с которыми ковалентно связаны концевые белки (TP) . Несмотря на то, что подобные структуры характерны для хромосом аденовирусов и бактериофага пси29 Bacillus subtilis, механизм репликации хромосом стрептомицетов существенно отличается от такового вирусных геномов. Если у вирусов синтез ДНК инициируется на конце хромосомы с использованием в качестве затравки TP, ковалентно связанного с нуклеотидом, и продолжается через весь геном до его конца, то репликация хромосомы и линейных плазмид стрептомицетов начинается с внутренней области начала репликации oriC .

Синтез ДНК распространяется в обе стороны от области начала репликации по стандартному полуконсервативному механизму и завершается на концах линейных молекул ДНК с образованием 3"- концевых брешей ( рис. I.50,а). Наиболее простым решением проблемы заполнения этой бреши могла бы быть прямая инициация репликации теломерных участков хромосом с TP-белка, ковалентно связанного с инициирующим нуклеотидом, что имеет место у аденовирусов ( рис. I.50,б). Действительно, стрептомицеты используют ТР для репликации теломерных участков, однако механизм распознавания теломер в данном случае существенно отличается. Существует три модели заполнения брешей в теломерных участках линейных хромосом бактерий.

Неизвестно, как много форм линейных бактериальных хромосом существует в природе. Не изучены и таксономические проблемы, связанные с топологией хромосом в царстве эубактерий. Если каждый тип хромосом характерен для отдельного таксономического домена, то можно предполагать, что топология хромосом играет важную роль в эволюции бактерий. Альтернативно топологические взаимопревращения хромосом могут быть относительно частыми событиями, а линейные и кольцевые хромосомы присутствуют только у близких видов бактерий. Нестабильность хромосом стрептомицетов (образование протяженных делеций и амплификация последовательностей нуклеотидов) связывают с перестройками в их концевых участках, часть из которых сопровождалась образованием кольцевых хромосом.

error: