Образовании в реальности эти средства. Дополненная реальность в образовании дошкольников

В статье рассматриваются идеи и уже существующие примеры использования технологий дополненной и виртуальной реальности (AR и VR) в образовании. В начале статьи дается краткий обзор технологий, даются основные определения, описывается техническая часть. Далее рассматривается существующий опыт применения этих технологий: приложения, организации, исследования. В последнем разделе предлагаются идеи для применения в образовании. В заключении указываются основные проблемы и трудности, которые могут возникнуть в процессе внедрения этих технологий.

Бутов Роман Александрович,
инженер ИБРАЭ РАН, аспирант

Григорьев Игорь Сергеевич,
методист Ресурсного центра ГБПОУ “Воробьевы горы”

Обзор технологий

Виртуальная и дополненная реальности (VR и AR) – это современные и быстро развивающиеся технологии. Их цель – расширение физического пространства жизни человека объектами, созданными с помощью цифровых устройств и программ, и имеющими характер изображения (Рис. 1).

На рисунке 1а показано изображение, которое видит пользователь через специальные очки виртуальной реальности (далее – VR). Изображение разделено на две отдельные картинки для каждого глаза и специально искажено, чтобы создать для глаз иллюзию трехмерного пространства. Если человек перемещается или просто поворачивает голову, то программа автоматически перестраивает изображение, что создает ощущение реального физического присутствия. С помощью контроллеров (джойстиков и т.п.) пользователь может взаимодействовать с окружающими предметами, например, он может поднять камень и бросить его с горы – встроенная в программу физическая модель просчитает полет этого камня, что еще больше создаст иллюзию реального пространства.

На рисунке 1б показано приложение, использующее технологии дополненной реальности (далее – AR). В этом приложении можно размещать изображения мебели на изображении с камеры телефона, но за счет их деформаций у пользователя создается впечатление, что он видит реальный предмет, располагающийся в комнате. Важно, то, что в этом случае реальность (комната) дополняется виртуальным креслом, и соответствующая технология будет называться дополненной реальностью. Создание дополненной реальности возможно не только с помощью смартфонов, но и других технических средств, например, посредством специальных очков. В этом случае, виртуальное изображение достраивается на поверхности линз очков.

Рисунок а

Рисунок б

Рисунок 1. Примеры технологии виртуальной (а) и дополненной реальности (б)

В качестве устройств на данный момент используются: очки виртуальной и дополненной реальности, контроллеры, наушники, смартфоны, планшеты. Эти устройства позволяют человеку видеть и слышать цифровые объекты (Рис. 2). В ближайшем будущем, ожидается появление перчаток с обратной связью, позволяющих человеку осязать цифровые объекты (Рис. 3).

Рисунок а

Рисунок б

Рисунок в

Рисунок 2. Устройства для VR и AR: очки с наушниками (а), контроллеры (б), смартфоны и планшеты (в)


Рисунок 3. Прототип перчаток с обратной связью

Программы создаются, как правило, на тех же платформах, на которых разрабатывают компьютерные игры (Unity , Unreal Engine , и т.д.), с помощью различных инструментов для разработки программ виртуальной и дополненной реальности (Steam VR , Google VR , Oculus , Windows Mixed Reality , Google ARCore , Apple ARkit , Google Tango , Vuforia и т.д.).

Прототипы устройств и первые использования терминов VR и AR существовали еще в середине 20 века, но современная терминология была сформирована в начале 90-х годов. Для VR в работе Джарона Ланье (Jaron Lanier) , для AR в работе авторов Коделла, Томаса и Мизелла (Caudell, Thomas P., and David W. Mizell) .

Вследствие бурного развития технологий, терминология постоянно изменяется. Однако, понятие реально-виртуального континуума (reality-virtuality continuum), предложенное в работе Милгрэма, Поула и др. (Milgram, Paul, et al.) остается актуальным и по сей день и является основополагающим для последующих. На рисунке 4 показана иллюстрация для определения понятия реально-виртуального континуума.

Рисунок 4. Реально-виртуальный континуум.

Все технологии, связанные с расширением реальности посредством цифровых объектов (возможно, что и не только цифровых), располагаются между двумя полярными вариантами возможных реальностей: реальностью (reality), в которой мы с вами живем, и виртуальной реальностью (virtual reality, VR). Реальность – это абсолютное отсутствие дополнительных объектов в физическом пространстве, т.е. само физическое пространство. Виртуальная реальность – это абсолютное отсутствие реальных объектов. Множество этих технологий называется смешанной реальностью (mixed reality, MR). На практике оно часто разбивается на подмножества. Двумя классическими подмножествами являются дополненная реальность (augmented reality, AR) и дополненная виртуальность (augmented virtuality, AV). В первом случае подразумеваются технологии, дополняющие реальность различными объектами, во втором, дополняющие виртуальную реальность реальными объектами.

В качестве примера можно привести технологию, которая погружает вас в Древний Рим. Если эта технология дополняет окружающее вас пространство различными объектами из той эпохи (мечи, доспехи, глиняные кувшины, храмы, арены), то это будет считаться AR технологией, если же вас переносят в древний город, с его архитектурой, людьми, погодой, событиями, и т.д., но, к примеру, лица этих людей будут транслироваться из окружающего мира, то это технология дополненной виртуальности (далее – AV). На сегодняшнем уровне развития, технология AV практически не используется, но в будущем она может стать гораздо более впечатляющей, чем AR и VR.

Говоря о прогнозах развития технологии, часто предполагается смещение существования человека в пространство смешанной реальности (MR), что уже наблюдается вследствие развития интернета и мобильных устройств. В рамках виртуально-реального континуума мобильные устройства можно считать технологией дополненной реальности AR, так как они дополняют окружающий мир дополнительной визуальной, звуковой и отчасти тактильной информацией. В короткометражном фильме антиутопии режиссер Кейши Матсуда (Keiichi Matsuda) , показывает результат такого движения, который автор называет чрезмерной или сверх-реальностью (hyper reality). Сможет ли человек в том виде, в котором он есть сейчас существовать в подобном мире? Это остается вопросом.

Имеющийся опыт применения в образовании

В последнее десятилетие, благодаря уменьшению стоимости устройств, технологии стали более доступны широкому кругу пользователей. Что, в свою очередь, привело к росту числа программ (приложений) по различным тематикам. Для VR это в основном игры от 1 лица в жанре шутер или записи камер 360 градусов (прыжки парашютистов, достопримечательности, дикая природа, подводный мир, динозавры и т.д.), для AR приложения для изменения лиц пользователей, измерения расстояний объектов реального мира, различные головоломки, а также обучающие программы (в основном, по анатомии и астрономии).

Если говорить о применении в образовании, то для виртуальной реальности это изучение природы , проведение лабораторных работ по физике , изучение динозавров , путешествие по планетам , астрономии и многое другое. Для AR это изучение анатомии , химии , астрономии .

Технологии VR и AR часто упоминаются в программах иммерсивного обучения (immersive education) . Такие программы включают в себя использование современных информационных технологий в процессе обучения, который проходит внутри различных виртуальных миров и симуляций, причем часто в игровой форме. Такой вид обучения способствует повышению вовлеченности, коммуникаций между обучаемыми и интереса к предмету.

В рамках академических исследований, на тему влияния технологий дополненной реальности на процесс обучения, было проведено десятки работ (наиболее полный обзор представлен в одной из указанных в списке источников работе – ). В обзоре отмечено улучшение успеваемости обучаемых, понимания материала, повышение уровня мотивации. Также растет степень вовлеченности в процесс обучения и интереса к изучению предмета, повышается уровень коммуникации между студентами.

Основные проблемы, с которыми сталкивались преподаватели – это дополнительное время, затраченное на скачивание приложений, обучение работе с ними обучаемых, плохая работа геолокации, иногда низкое качество отклика моделей, трудности у студентов с работой в формате AR. В целом, все проблемы связаны с недостатком опыта в работе с AR и пока еще несовершенством технологии. В дальнейшем, с развитием технологии, эти проблемы будут устранены.

Идеи для применения

В данном разделе представлены лишь некоторые идеи того, как могут быть использованы возможности технологий AR и VR в сфере образования.

a) виртуальная реальность (VR)

Возможность этой технологии погружать человека в виртуальный мир определяет основное направление для ее развития в образовании. Все то, что не может быть создано в реальном мире по техническим, экономическим или физическим причинам, может быть создано в мире виртуальном. Возможность побывать там, где в реальности побывать трудно или невозможно. Увидеть электрические и магнитные поля, доисторических животных, подводные миры, древние страны, планеты и астероиды. Также эта технология может открывать некоторые вещи по-новому, к примеру, живопись, есть приложение, которое погружает вас в картину Ван Гога «Ночное Кафе» . Такие приложения могут по-новому открыть живопись в веке кино и компьютерных игр.

В физике, эта технология может позволить проводить лабораторные работы в современных лабораториях. К примеру, почему бы не смоделировать наиболее известные исследовательские проекты последних лет: большой андронный коллайдер или детектор гравитационных волн и провести в них лабораторные работы? Это позволит заинтересовать обучаемых, показывая им современное состояние науки, а не то, при котором учились еще их деды и прадеды (что конечно, тоже имеет значение).

При изучении иностранных языков, большой прогресс в обучении достигается при живом общении с носителем. Но если такого человека найти трудно или трудно технически доставить его в аудиторию. Виртуальная реальность уже сейчас позволяет попадать в пространства, где можно не только общаться, но и взаимодействовать с другими пользователями . Например, можно перенести группу, изучающих японский язык в России, и группу, изучающих русский язык в Японии, в одно пространство, где они могли бы общаться, выполнять задания. А на следующее занятие, например, с группой из Испании. Такой интерактивный формат будет интересен обучаемым в любом возрасте. Проводить же такие встречи вживую или даже с использованием видеоконференций связи было бы не так эффективно, но более трудоемко и затратно.

В изучении истории, обучаемые могут ознакомиться с трехмерными экспонатами музеев мира. А также с воссозданными городами, битвами или другими историческими событиями. Например, можно не только воссоздать Бородинскую битву, но и позволить обучаемым в ней поучаствовать и принимать свои собственные, а также коллективные решения. Таким образом, это будет новым шагом развития после создания Бородинской панорамы в Москве.

В области географии современное развитие камер 360 градусов, позволяют пользователям снимать трехмерные панорамы и видео. Многие исследователи, путешественники и просто туристы снимают множество материала и выкладывают его в открытый доступ. Это видео про горы, океаны, полеты, вулканы, полюса. Использование такого материала на занятиях, позволит обучаемым увидеть далекие уголки нашей планеты и поддержать их интерес к путешествиям.

В биологии технология открывает возможность масштабироваться до размера органов, клетки или даже молекулы ДНК . Интерактивные возможности позволяют не только увидеть статическую картину, но и посмотреть, к примеру, процесс репликации ДНК.

В области химии приложения позволяют проводить опасные или дорогостоящие опыты . Изучать строения атомов и молекул. Наблюдать за химическими превращениями в динамике.

В области литературы можно, например, визуализировать наиболее яркие моменты художественных произведений. Интересным видится совмещение материала и события. Например, побывать на экзамене в Царскосельском лицее и увидеть, как Пушкин читает «Воспоминания в Царском Селе». Конечно, голоса поэта и главное той энергии уже не воссоздать, но такой формат позволит обучаемым почувствовать ту атмосферу, которая царила в то время.

b) дополненная реальность (AR)

Визуализация алгебраических поверхностей, как второго, так и более высоких порядков. На рис. 5 показаны алгебраические поверхности 2 порядка при их отображении с помощью технологии AR. Обучаемый получит возможность качественно изучить поверхность как реальный объект перед собой, а не на экране компьютера и, тем более, книги, а также изменять параметры в реальном времени и видеть результат. Все это должно способствовать лучшему пониманию структуры уравнений (интерактивное изменение параметров) и трехмерной формы поверхностей.

Рис. 4. Алгебраические поверхности 2 порядка

Аналогичные визуализации можно создавать для поверхностей более высокого порядка (рис. 5).

Рис. 5. Алгебраические поверхности порядка больше 2: (a) Диагональная кубическая поверхность Клебша, (б) Лента Мебиуса, (в) Бутылка Клейна

Основным направлением для применения в физике является визуализация уравнений математической физики. При этом показывается решение в виде физического процесса. Обучаемый сможет динамически изменять параметры уравнения и видеть влияние этого изменения на результат.

Интересным видится визуализация фазовых диаграмм, в частности pvt-диаграммы (фазовой диаграммы) воды (рис. 6). На диаграмме возможно отображение физических процессов: изобарного, изохорного, изотермического, адиабатного и политропных процессов. Студент будет видеть полную картину процесса, а не проекции на определенные плоскости, интерактивно менять точки начала и окончания процесса, видеть дополнительную информацию о процессе (выделяемая/поглощаемая энергия, параметры в начале и конце).

Рис. 6. Фазовая диаграмма воды

В химии отображение атомных орбиталей (рис. 7) поможет лучше понять и запомнить их строение. Визуализация строения молекул (рис. 8), позволяет увидеть различные химические связи в пространстве.

Рис. 7. Фазовая диаграмма воды

Рис. 8. Молекула кофеина

В машиностроении визуализация моделей оборудования с возможностью воспроизведения анимации, показывающей принцип их работы. Для насосов и турбин можно размещать рядом фазовую диаграмму среды с нанесенным на ней физическим процессом. На рис. 9 показан снимок из AR приложения, где показана АЭС с реактором ВВЭР мощностью 1200 МВт. В приложении отображаются основные конструкции, оборудование и анимируется движение среды.

Рис. 9. AR приложение с АЭС ВВЭР 1200

Выводы

Сегодня в реальности массового общего образования представить себе использование технологий дополненной и виртуальной реальности достаточно тяжело. И дело не в финансовой составляющей – мы знаем успешный пример амбициозного проекта «Московская электронная школа», в рамках которого подобные технологии используются в некотором объеме. По нашему мнению, основные трудности связана с:

  • Жесткостью программы, которую необходимо успешно усвоить ученикам в рамках общего образования. Несмотря на то, что технологии виртуальной и дополненной реальности имеют большой потенциал для повышения успеваемости обучаемых, они же могут существенно отвлекать. Примеры использования технологии говорят об увеличении вовлеченности и повышении интереса к процессу обучения. Некоторые исследователи делают вывод, что эти факторы ведут к повышению успеваемости обучаемых. Однако, в случае излишнего увлечения формой в ущерб содержанию эффект может быть обратным.
  • Использование подобных технологий, вероятно, может давать большой эффект, но использование в рамках стандартного школьного урока в 45 минут будет приводить к существенному нарушению программы, так как временные затраты на работу с материалом с использованием данных технологий так или иначе будут изменять план учебных занятий.
  • Внедрение подобных технологий связано с несколькими трудностями, которые носят финансовый характер: дороговизна оборудования, отсутствие большого числа качественных приложений и, соответственно, необходимость их разработки, небольшой опыт пользования данной технологией у преподавателей, которых необходимо дополнительно обучить.
  • Скромное количество и разнообразие существующих приложений с использованием технологий AR и VR, особенно специально созданных для образования, является еще одним «тормозом». Для того, чтобы изменить ситуацию, безусловно, необходима государственная поддержка таких проектов, государственный заказ. Создание даже небольшого приложения виртуальной реальности, к примеру, в области истории, требует работы множества специалистов: историков, художников, программистов, культурологов и др. Подобные ресурсы возможно найти или при наличие серьезных ресурсов и запроса со стороны государства или крупного бизнеса, либо в случае, когда интересы различных сторон пересекаются.

Какие есть способы преодолеть эти трудности? Основной наш тезис заключается в том, что в настоящий момент использование технологий дополненной и виртуальной реальности наиболее адекватно в области дополнительного образования, которое может служить проводником новых идей, не столь жестко структурировано, как общее образование.

Проиллюстрируем как дополнительное образование может преодолевать трудности, пройдясь по указанным выше пунктам потенциальных проблем внедрения технологий.

Дополнительное образование имеет гораздо гибкую по сравнению с общим образованием систему устройства. Программы различных уровней, различная продолжительность занятий, привлечение педагогов из профильных организаций на частичную занятость. Возможности сотрудничества с профильными промышленными предприятиями, вузами позволяет привлечь компетентных специалистов, а также потенциально дает возможность найти способы решения вопросов по необходимому оборудованию. Особенно интересен вариант сотрудничества с другими организациями, например, музеями, которые могут быть заинтересованы в подобных технологиях. Уже сейчас существуют экскурсии и специально созданные экспозиции, где активно используются возможности AR и VR. Так почему не создавать и использовать высокотехнологичный продукт для совместного использования? Ведь они могут быть включены как элементы программ по многим направлениям дополнительного образования.

Хохлова Татьяна Юрьевна

Магистрант

НГПУ ФТП

г. Новосибирск

Аннотация: в статье показана возможность использования AR технологии в образовательной среде с целью визуального моделирования учебного материала, дополнения его наглядной информацией; преимущества и недостатки данной технологии.

Ключевые слова: , образование.

ТЕХНОЛОГИЯ ДОПОЛНЕННОЙ РЕАЛЬНОСТИ В ОБРАЗОВАНИИ

 Технология дополненной реальности в образовательном пространстве стала использоваться относительно недавно. Дискуссия о термине «дополненная реальность» и возможности использования данной технологии в предметной области «информатика» неоднозначно и позволяет говорить о несформированности самого термина. Многие эксперты называют дополненную реальность «улучшенной», «расширенной» и даже «дополнительной». Более точным все же будет название «дополненная реальность», так как данная технология может как дополнять окружающий мир объектами мира виртуального, так и устранять из него объекты.

Так для нас было продуктивным обращение к электронному ресурсу, в котором д ополненная реальность рассматривалась как «ответ современных технологий на проблемные вопросы, которые возникают у нас каждый день. Она более понятна большинству людей, ее проще воплотить, чем виртуальные миры. Дополненная реальность позволяет нам сделать ежедневную реальность богаче. В сочетании с неисчерпаемостью Интернет-ресурсов, ее возможности безграничны.»

В продолжение уточнения можно привести определение дополненной реальности (augmented reality, AR) как «среда с прямым или косвенным дополнением физического мира цифровыми данными в режиме реального времени при помощи компьютерных устройств - планшетов, смартфонов и инновационных гаджетов, а также программного обеспечения к ним» .

На вопрос о возможности использования технологии дополненной реальности в образовании можно ответить утвердительно, ибо данная технология позволяет сделать уроки увлекательными, интересными, понятными.

С помощью дополненной реальности можно «оживить» статичные страницы книг и учебных пособий, совершить прогулку по джунглям, почувствовать себя участником исторического события.

Однако почти на всех направлениях обучения чаще всего используются электронно-информативные или интерактивные средства. Практически все школы оборудуют кабинеты компьютерной техникой, проекционной аппаратурой, ЭОР и другими современными средствами обучения. Чаще всего возможности этой техники не используются в полной мере. А технология дополненной реальности либо не используется совсем, либо применяется крайне редко. Дополненная реальность может использоваться в изучении любого предмета, будь то физика или история, биология или литература. Уже сейчас можно найти много программ для юных математиков (Pocket Tutor ), начинающих биологов (AR Flashcards ) и другие.

Как и у любой новой технологии у AR есть свои преимущества и недостатки. С одной стороны она позволяет значительно расширить возможности образовательного процесса. Мнение американского философа и педагога Джон Дьюи: « Если мы будем учить сегодня так, как учили вчера, мы украдем у детей завтра», произнесенное в начале 20 века актуально и сегодня. Школа должна идти в ногу со временем и демонстрировать детям то, с чем им придется работать в самое ближайшее время.

Недостатки этой технологии выходят за рамки образовательного процесса и связаны, в первую очередь, с социальными последствиями (применение контактных линз с дополненной реальностью, проблемы, связанные с конфиденциальностью информации ).

Каким образом можно использовать технологию дополненной реальности в образовательном процессе. В первую очередь как вспомогательное средство для максимизации наглядности и интерактивности изучаемого предмета, более глубокого погружения в него, проведения виртуальных лабораторных работ. Использование дополненной реальность и 3 D моделирования совместно мотивирует учащихся к изучению программирования и 3 D моделирования. Данная технология может быть использована при выполнении проектных заданий, для визуализации результатов работы обучающихся над проектом, сделав его максимально интерактивным.

Таким образом, технология дополненной реальности позволяют педагогу вовлечь учащихся в исследование, разрабатывая для этого учебные ситуации, использовать современные технологии, инструменты и способы деятельности для достижения качественного результата.

По мнению Катхановой И.Ф. и Бестыбаевой К. И. на данный момент нет возможности применения AR в образовательном процессе, так как нет какой-либо единой методологии применения технологии дополненной реальности в образовательной среде . Не так уж и много приложений, которые можно использовать в образовании, но, тем не менее, дополненная реальность – это наиболее результативный способ познания окружающего нас мира, и путь, по которому мы рано или поздно пойдем, потому что живем в стремительно развивающийся век информационных технологий.

Список литературы

    Дополненная реальность=школа будущего [Электронный ресурс] http :// evtoolbox . ru / ev - toolbox / education (дата обращения 20.12.16)

    Что такое дополненная реальность? [Электронный ресурс] (дата обращения 20.12.16)

    Как технология дополненной реальности помогает в образовании детей. [Электронный ресурс] (дата обращения 20.12.16)

    Социальные последствия дополненной реальности [Электронный ресурс]

    Технология дополненной реальности в образовании. Интерактив плюс. [Электронный ресурс] (дата обращения 20.12.16)

Термин «дополненная реальность» имеет общепринятые характеристики - это комбинация реального и виртуального контекста, их взаимодействие в реальном времени, оба контекста представлены в 3D-пространстве.Образовательная дополненная реальность – комплекс объектов 3Д-моделей и программного обеспечения для использования в процессе обучения.
Для демонстрации Объектов дополненной реальности - ОДР учитель использует следующий перечень аппаратных средств: камера, компьютер с программой и маркер с графическим кодом. Процесс отображения объектов проходит в 3 этапа: распознавания маркера, отслеживания положения объекта и вывод на экран вместо маркера виртуальной информации.
Задачи, которые я ставлю в связи с применением данной технологии - расширить традиционную методику дошкольного образования за счет возможностей программы ДР, в частности, за счет включения ребенка в процесс взаимодействия с объектами, за счет наблюдения с помощью тех средств за своим движением и реакцией, самоконтроля ребенка. Я хочу привнести в деятельность ребенка на занятии элементы самостоятельной игры, возможности самостоятельного выбора объектов, визуально ярких и трехмерно двигающихся персонажей и моделей, соответствующих современным техническим возможностям. Музыкальные инструменты, представленные в качестве объектов ДР, - это используемые в практике классических исполнителей основные инструменты симфонического оркестра, а также некоторые инструменты, бытующие в музыке народностей России.
Используя данную технологию в обучении детей, я хочу достичь:
1. Полно и всесторонне ознакомить детей с инструментом в 3Д модели, в звучании и с помощью видео играющего исполнителя.
2. Дать представление о разновидностях и группах музыкальных инструментов,о приемах классического и традиционного инструментального исполнительства.
3. Помочь детям ощутить живое биение музыки, почувствовать себя участником процесса создания и исполнения музыки.
Прилагаю несколько фотографий и видео:

С моих музыкальных досугов.

От дошкольного к школьному образованию. Особенности организации образовательного процесса в начально

Одним из наиболее популярных направлений развития виртуальной и дополненной реальности является образование. Существует много различных вариантов применения современных технологий в этой области — от простых школьных туров по Древнему Египту на уроках географии до обучения специалистов для работы на сверхскоростном поезде или на космической станции. Своими замечаниями о том, какими возможности обладает виртуальная реальность в образовании, поделился Дмитрий Кириллов, руководитель VRAR lab и Cerevrum Inc .

Плюсы использования VR в образовании

Использование виртуальной реальности открывает много новых возможностей в обучении и образовании, которые слишком сложны, затратны по времени или дороги при традиционных подходах, если не всё одновременно. Можно выделить пять основных достоинств применения AR/VR технологий в образовании.

Наглядность. Используя 3D-графику, можно детализированно показать химические процессы вплоть до атомного уровня. Причем ничто не запрещает углубиться еще дальше и показать, как внутри самого атома происходит деление ядра перед ядерным взрывом. Виртуальная реальность способна не только дать сведения о самом явлении, но и продемонстрировать его с любой степенью детализации.

Безопасность. Операция на сердце, управление сверхскоростным поездом, космическим шатлом, техника безопасности при пожаре — можно погрузить зрителя в любое из этих обстоятельств без малейших угроз для жизни.

Вовлечение. Виртуальная реальность позволяет менять сценарии, влиять на ход эксперимента или решать математическую задачу в игровой и доступной для понимания форме. Во время виртуального урока можно увидеть мир прошлого глазами исторического персонажа, отправиться в путешествие по человеческому организму в микрокапсуле или выбрать верный курс на корабле Магелланна.

Фокусировка. Виртуальный мир, который окружит зрителя со всех сторон на все 360 градусов, позволит целиком сосредоточиться на материале и не отвлекаться на внешние раздражители.

Виртуальные уроки. Вид от первого лица и ощущение своего присутствия в нарисованном мире — одна из главных особенностей виртуальной реальности. Это позволяет проводить уроки целиком в виртуальной реальности.

Форматы VR в образовании

Использование новых технологий в образовании предполагает, что учебноый процесс должен быть перестроен соответствующим образом.

ОЧНОЕ ОБРАЗОВАНИЕ

Виртуальные технологии предлагают интересные возможности для передачи эмпирического материала. В данном случае классический формат обучения не искажается, так как каждый урок дополняется 5–7-минутным погружением. Может быть использован сценарий, при котором виртуальный урок делится на несколько сцен, которые в включаются в нужные моменты занятия. Лекция остается, как и прежде, структурообразующим элементом урока. Такой формат позволяет модернизировать урок, вовлечь учеников в учебный процесс, наглядно иллюстрировать и закрепить материал.

ДИСТАНЦИОННОЕ ОБРАЗОВАНИЕ

При дистанционном обучении ученик может находиться в любой точке мира, равно как и преподаватель. Каждый из них будет иметь свой аватар и лично присутствовать в виртуальном классе: слушать лекции, взаимодействовать и даже выполнять групповые задания. Это позволит придать ощущение присутствия и устранить границы, которые существуют при обучении через видеоконференции. Также преподаватель сможет понять, когда ученик решит покинуть урок, так как шлемы Oculus Rift и HTC Vive оборудованы датчиком освещения, позволяющим распознать, используется шлем в данный момент или нет.

СМЕШАННОЕ ОБРАЗОВАНИЕ

При наличии обстоятельств, мешающих посещать занятия, ученик может делать это удаленно. Для этого класс должен быть оборудован камерой для съемки видео в формате 360-градусов с возможностью трансляции видео в режиме реального времени. Ученики, посещающие урок дистанционно, смогут наблюдать происходящее в классе от первого лица (например, прямо со своего места), видеть своих одноклассников, общаться с преподавателем и принимать участие в совместных уроках.

САМООБРАЗОВАНИЕ

Любой из разработанных образовательных курсов может быть адаптирован для самостоятельного изучения. Сами уроки могут размещаться в онлайн-магазинах (например, Steam, Oculus Store, App Store, Google Play Market), чтобы у всех была возможность осваивать или повторять материал самостоятельно.

Минусы использования VR в образовании

Однако пока использование технологий и сами устройства не будут максимально «отточены», будут существовать минусы и потенциальные проблемы использования виртуальной реальности в образовании.

Объем. Любая дисциплина довольно объемна, что требует больших ресурсов для создания контента на каждую тему урока — в виде полного курса или десятков и сотен небольших приложений. Компании, которые будут создавать такие материалы, должны быть готовы заниматься разработкой довольно продолжительное время без возможности ее окупить до выхода полноценных наборов уроков.

Стоимость. В случае с дистанционным обучением нагрузка по покупке устройства виртуальной реальности ложится на пользователя, или этим устройством может быть его телефон. Но образовательным учреждениям понадобится закупать комплекты оборудования для классов, в которых будут проходить занятия, что также требует существенных инвестиций.

Функциональность. Виртуальная реальность, как и любая технология, требует использования своего, специфического языка. Важно найти верные инструменты для того, чтобы сделать контент наглядным и вовлекающим. К сожалению, многие попытки создания обучающих VR-приложений не используют все возможности виртуальной реальности и, как следствие, не выполняют своей функции.

Пример: урок физики в VR

Для того, чтобы проверить эффективность и жизнеспособность использования виртуальной реальности в образовании, компания VRAr lab разработала экспериментальный урок по физике. В исследовании приняли участие 153 человека: подростки 6-17 лет, их родители и родственники. После просмотра участников попросили ответить на три вопроса: насколько хорошо усваивается учебный материал, поданный таким образом; каково отношение детей к обучению в виртуальной реальности; какие школьные предметы (по мнению школьников) предпочтительны для создания уроков в виртуальной реальности.

Урок был посвящен теме электрического тока в простейшей электрической цепи. Надев очки, пользователь оказывался в комнате перед столом, на котором была визуализирована простейшая электрическая цепь. Далее пользователь попадал внутрь проводника, где ему предстояло изучить его строение (визуализация строения атома, кристаллической решетки, условная визуализация течения электрического тока в связке с источником питания). Урок рассчитан на шесть учеников, сопровождается лекцией учителя и длится от 5 до 7 минут.

После лекции респонденты заполнили анкеты.

Усвоение материала и отношение к урокам в VR

Респондентам было предложено ответить на три закрытых вопроса анкеты: какая из перечисленных частиц не является частицей атома; из чего состоит ядро атома; какая частица отвечает за передачу электрического заряда. Результат оказался отличным – лишь 8,5% респондентов не усвоили материал.

Что касается отношения к подобным урокам, то по данным VRAR lab, 148 респондентов из 153 (97,4%) желали бы и дальнейшего применения технологий виртуальной реальности на школьных уроках, причем в качестве дисциплин большинство указало физику и химию.

В целом, эксперимент, проведенный VRAR lab, показал успешность применения VR в образовании. Современные технологии, несмотря на долгий путь развития, еще молоды, но всё же виртуальная реальность – это следующий большой рывок в развитии сферы образования. И в ближайшее время нам предстоит увидеть множество интересных открытий в этой области.

Разделы: Начальная школа

Мы уже не мыслим себя без гаджетов, постепенно заменяя живое общение общением в соцсетях. Язык интернета – это особый язык, использующий условные знаки, символы, смайлики. И в результате этого многие учащиеся перестают читать, и, как следствие, снижается способность к логической, образной, эмоциональной речи.

Совершенно понятно, что переломить существующую тенденцию невозможно, значит, необходимо использовать интерес учащихся к информационным технологиям, чтобы стимулировать их познавательную активность.

Что же такое дополненная реальность? Это - результат введения в поле восприятия любых сенсорных данных с целью дополнения сведений об окружении и улучшения восприятия информации. В своей работе мы использовали маркерную технологию: при попадании маркера в видеокамеру на нем появляется 3D объект. Для создания проекта дополненной реальности были привлечены ученики 11 класса, и использовалась программа EV Toolbox (eligovision.ru).

Для создания проектов можно использовать любую программу дополненной реальности.

Используя проекты дополненной реальности, мы провели интегрированные уроки развития речи и математики, а также сделали виртуальную постановку сказки «Гуси лебеди», что являлось первым шагом в создании виртуального театра. Для постановки мы взяли сценарий сказки «Гуси-лебеди» Олеси Емельяновой, добавили рассказчика. Автор текста очень живо и весело смогла передать содержание русской народной сказки.

Для проведения уроков и театрализованного представления потребовался проектор с экраном, ноутбук (или компьютер с видео камерой) с установленной программой EV Toolbox и проектами.

Для интегрированного урока учениками 11 класса были созданы трехмерные фигуры с помощью программы Blender 3D.

Одиннадцатиклассники подготовили игровое поле с пустыми квадратами, маркеры с фигурами, а также карточки с примерами для устного счета.

В начале урока учитель предложил провести необычную математическую разминку. В разминку можно включить любые задания для устного счета: на знание таблицы умножения, деления, примеры на сложение и вычитание. Ученик, правильно назвавший ответ, выходил к игровому полю и выставлял фигурку на нем.

Если учитель хочет, чтобы фигурки стояли на определенном месте, то можно на пустые квадраты положить карточки с правильными ответами. Обучающиеся поменяют карточку с правильным ответом на фигурку .

После того, как разминка была окончена, а фигурки стояли на своих местах, учитель предложил придумать небольшую сказку (историю), используя выставленные на игровом поле фигуры.

На этом уроке дети могут работать по одному, в парах, группах.

После выполнения задания ученик выходил к игровому полю и рассказывал свою сказку (историю). Остальные ученики помогали с места, если это было необходимо, подсказывали свой сюжет развития событий, передвигали и меняли местами маркеры. Вся игра была видна на проекторе.

Ребята с нетерпением ждали второго урока развития речи, повторяли таблицу умножения, чтобы правильно отвечать и выходить к игровому полю ставить фигуру. Подумали ребята и о сюжете новой игры (появились различные варианты сюжетных линий).

На втором уроке обучающиеся разбились на группы. Каждая группа подготовила свой рассказ, и представитель команды выходил к игровому полю и рассказывал историю, члены группы передвигали маркеры по игровому полю.

Мы провели несколько уроков развития речи с использованием дополненной реальности, и ребята с большим увлечением сочиняли и рассказывали свои сказки.

В прошлом году мы приняли участие в городском проекте «Мастерская сказки». В процессе подготовки к театрализованному представлению третьеклассники изучали традиции и обычаи русского народа на уроках окружающего мира, литературного чтения и во внеурочное время.

Между учениками третьего класса были распределены роли, и ребята с большим энтузиазмом выучили слова героев в ожидании необыкновенного исполнения сказки.

Как только маркеры с героями попали в объектив камеры, и на экране появилось 3D-изображение, сказка началась. Двигая маркер по игровому полю, ребята перемещали героев, управляли их появлением или уходом со сцены. Процесс очень увлек детей. Зрителям так же было интересно следить за героями и разворачивающимися перед ними событиями.

В результате проделанной работы удалось повысить познавательную активность обучающихся. Ребята не просто озвучивали готовые роли, но и вживались в образы.

Дети получили прекрасный опыт работы в команде.

error: