Самые удивительные вещества. Рекорды веществ Самое тяжелое вещество во вселенной

Мы все любим металлы. Машины, велосипеды, кухонная техника, банки для напитков и множество других вещей — все они состоят из металла. Металл — краеугольный камень нашей жизни. Но иногда он бывает очень тяжелым.

Когда мы говорим о тяжести того или иного метала, то обычно имеем в виде его плотность, то есть соотношение массы к занимаемому объёму.

Еще одним способом измерения «веса» металлов является их относительная атомная масса. Самыми тяжелыми металлами по относительной атомной массе являются плутоний и уран.

Если вы хотите узнать, какой металл самый тяжелый , если рассматривать его плотность, то мы рады вам помочь. Вот топ-10 самых тяжелых металлов на Земле с указанием их плотности на кубический см.

10. Тантал — 16,67 г/см³

Тантал является важным компонентом во многих современных технологиях. В частности, он используется для производства конденсаторов, которые применяются в компьютерной технике и мобильных телефонах.

9. Уран — 19,05 г/см³

Это самый тяжелый элемент на Земле, если учитывать его атомную массу — 238,0289 г/моль. В чистом виде уран представляет собой серебристо-коричневый тяжелый металл, который почти вдвое плотнее свинца.

Как и плутоний, уран служит необходимым компонентом для создания ядерного оружия.

8. Вольфрам — 19,29 г/см³

Считается одним из самых плотных элементов в мире. В дополнение к своим исключительным свойствам (высокая теплопроводность и электропроводность, очень высокая стойкость к воздействию кислот и истиранию) вольфрам также отличается тремя уникальными свойствами:

  • После углерода он имеет самую высокую температуру плавления — плюс 3422 ° C. А его температура кипения — плюс 5555 ° C, эта температура примерно сопоставима с температурой поверхности Солнца.
  • Сопровождает оловянные руды, однако препятствует выплавке олова, переводя его в пену шлаков. За это и получил свое название, которое в переводе с немецкого означает «волчьи сливки».
  • Вольфрам имеет самый низкий коэффициент линейного расширения при нагревании из всех металлов.

7. Золото — 19,29 г/см³

С давних времен люди покупают, продают и даже убивают за этот драгоценный металл. Да что люди, целые страны занимаются скупкой золота. Лидером на данный момент является Америка. И вряд ли наступит пора, когда в золоте не будет нужды.

Говорят, что деньги не растут на деревьях, но золото — растет! Небольшое количество золота можно найти в листьях эвкалипта, если тот находится на золотоносной почве.

6. Плутоний — 19,80 г/см³

Шестой самый тяжелый металл в мире — один из самых нужных компонентов для . А еще он — настоящий хамелеон в мире элементов. Плутоний демонстрирует красочное состояние окисления в водных растворах, при этом их цвет варьируется от светло-фиолетового и шоколадного до светло-оранжевого и зеленого.
Цвет зависит от степени окисления плутония и солей кислот.

5. Нептуний — 20,47 г/см³

Этот металл с серебристым блеском, названный в честь планеты Нептун, был открыт химиком Эдвином Макмилланом и геохимиком Филиппом Абельсоном в 1940 году. Он используется для получения шестого номера в нашем списке, плутония.

4. Рений — 21,01 г/см³

Слово «Рений» происходит от латинского Rhenus, что означает «Рейн». Нетрудно догадаться, что этот металл был обнаружен в Германии. Честь его открытия принадлежит немецким химикам Иде и Вальтеру Ноддакам. Это последний из открытых элементов, у которого есть стабильный изотоп.

Из-за очень высокой температуры плавления рений (в виде сплавов с молибденом, вольфрамом и другими металлами) применяется для создания компонентов ракетной техники и авиации.

3. Платина — 21,40 г/см³

Один из в этом списке (кроме Осмия и Калифорния-252) используется в самых разных областях — от ювелирного дела до химической промышленности и космической техники. В России лидером по добыче платинового металла является ГМК «Норильский никель». В год в стране добывается около 25 тонн платины.

2. Осмий — 22,61 г/см³

Хрупкий и при этом крайне твердый металл редко используется в чистом виде. В основном его смешивают с другими плотными металлами, такими как платина, для создания очень сложного и дорогого хирургического оборудования.

Название «осмий» происходит от древнегреческого слова «запах». При растворении щелочного сплава осмиридия в жидкости появляется резкое амбре, похожее на запах хлора или подгнившей редьки.

1. Иридий — 22,65 г/см³ – самый тяжелый металл

Этот металл с полным правом может претендовать на звание элемента с наибольшей плотностью. Однако споры о том, какой же металл тяжелее — иридий или осмий, все-таки ведутся. А все дело в том, что любая примесь может снизить плотность этих металлов, а их получение в чистом виде — очень тяжелая задача.

Теоретическая расчетная плотность иридия составляет 22,65 г/см³. Он почти втрое тяжелее, чем железо (7,8 г/см³). И почти вдвое тяжелее, чем самый тяжелый жидкий металл — ртуть (13,6 г/см³).

Как и осмий, иридий был открыт английским химиком Смитсоном Теннантом в начале 19 века. Любопытно, что Теннант нашел иридий вовсе не целенаправленно, а случайно. Он был обнаружен в примеси, оставшейся после растворения платины.

Иридий в основном используется в качестве отвердителя платиновых сплавов для оборудования, которое должно выдерживать высокие температуры. Он перерабатывается из платиновой руды и является побочным продуктом при добыче никеля.

Название «иридий» переводится с древнегреческого как «радуга». Это объясняется наличием в металле солей разнообразной окраски.

Самый тяжелый металл в периодической таблице Менделеева очень редко встречается в земных веществах. Поэтому его высокая концентрация в образцах породы — маркер их метеоритного происхождения. За год во всем мире добывают около 10 тысяч килограмм иридия. Крупнейший его поставщик — Южная Африка.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Этот базовый список из десяти элементов является самым "тяжёлым" по плотности на один кубический сантиметр. Однако обратите внимание, что плотность - это не масса, она просто показывает, насколько плотно упакована масса тела.

Теперь, когда мы это понимаем, давайте взглянем на самые тяжёлые во всей известной человечеству вселенной.

10. Тантал (Tantalum)

Плотность на 1 см³ - 16,67 г

Атомный номер тантала - 73. Этот сине-серый металл является очень твёрдым, а также имеет супервысокую температуру плавления.

9. Уран (Uranium)


Плотность на 1 см³ - 19,05 г

Обнаруженный в 1789 году немецким химиком Мартином Генрихом Клапортом (Martin H. Klaprot), металл стал настоящим ураном лишь почти сто лет спустя, в 1841 году, благодаря французскому химику Эжену Мелькиору Пелиго.

8. Вольфрам (Wolframium)


Плотность на 1 см³ - 19,26 г

Вольфрам существует в четырёх различных минералах, а также является самым тяжёлым из всех элементов, играющих важную биологическую роль.

7. Золото (Aurum)


Плотность на 1 см³ - 19,29 г

Говорят, деньги на деревьях не растут, чего не скажешь о золоте! Небольшие следы золота были обнаружены на листьях эвкалиптовых деревьев.

6. Плутоний (Plutonium)


Плотность на 1 см³ - 20,26 г

Плутоний демонстрирует красочное состояние окисления в водном растворе, а также может спонтанно изменять состояние окисления и цвета! Это настоящий хамелеон среди элементов.

5. Нептуний (Neptunium)

Плотность на 1 см³ - 20,47 г

Названный в честь планеты Нептун, он был обнаружен профессором Эдвином Макмилланом (Edwin McMillan) в 1940 году. Он также стал первым обнаруженным синтетическим трансурановым элементом из семейства актиноидов.

4. Рений (Rhenium)

Плотность на 1 см³ - 21,01 г

Название этого химического элемента происходит от латинского слова "Rhenus", что означает "Рейн". Он был обнаружен Вальтером Ноддаком (Walter Noddack) в Германии в 1925 году.

3. Платина (Platinum)

Плотность на 1 см³ - 21,45 г

Один из самых драгоценных металлов в этом списке (наряду с золотом), и используется для изготовления практически всего. В качестве странного факта: вся добытая платина (до последней частицы) могла бы поместиться в гостиной среднего размера! Не так много, на самом деле. (Попробуйте поместить в неё всё золото.)

2. Иридий (Iridium)


Плотность на 1 см³ - 22,56 г

Иридий был обнаружен в Лондоне в 1803 году английским химиком Смитсоном Теннантом (Smithson Tennant) вместе с осмием: элементы присутствовали в природной платине в качестве примесей. Да, иридий был обнаружен чисто случайно.

1. Осмий (Osmium)


Плотность на 1 см³ - 22,59 г

Не существует ничего более тяжёлого (на один кубический сантиметр), чем осмий. Название этого элемента происходит от древнегреческого слова "osme", что означает "запах", поскольку химические реакции его растворения в кислоте или воде сопровождаются неприятным, стойким запахом.

Человек всегда стремился отыскать материалы, которые не оставляют никаких шансов своим конкурентам. Издревле учёные искали самые твердые материалы в мире , самые лёгкие и самые тяжелые. Жажда открытий привела к открытию идеального газа и идеально чёрного тела. Представляем вам самые удивительные вещества в мире.

1. Самое черное вещество

Самое чёрное вещество в мире называется Vantablack и состоит из совокупности углеродных нанотрубок (см. углерод и его аллотропные модификации). Проще говоря, материал состоит из бесчисленного множества «волосков», попав в которые, свет отскакивает от одной трубки к другой. Таким образом поглощается около 99,965% светового потока и лишь ничтожная часть отражается обратно наружу.
Открытие Vantablack открывает широкие перспективы применения этого материала в астрономии, электронике и оптике.

2. Самое горючее вещество

Трифторид хлора является самым горючим веществом из когда-либо известных человечеству. Является сильнейшим окислителем и реагирует практически со всеми химическими элементами. Трифторид хлора способен прожечь бетон и легко воспламеняет стекло! Применение трифторида хлора практически невозможно из-за его феноменальной воспламеняемости и невозможности обеспечить безопасность использования.

3. Самое ядовитое вещество

Самый сильный яд — это ботулотоксин. Мы знаем его под названием ботокс, именно так он называется в косметологии, где нашел свое основное применение. Ботулотоксин — это химическое вещество, которое выделяют бактерии Clostridium botulinum. Помимо того, что ботулотоксин — самое ядовитое вещество, так он ещё и обладает самой большой молекулярной массой среди белков. О феноменальной ядовитости вещества говорит тот факт, что достаточно всего 0,00002 мг мин/л ботулотоксина, чтобы на полдня сделать зону поражения смертельно опасной для человека.

4. Самое горячее вещество

Это, так называемый, кварк-глюонная плазма. Вещество было создано с помощью столкновением атомов золота при почти световой скорости. Кварк-глюонная плазма имеет температуру 4 триллиона градусов Цельсия. Для сравнения, этот показатель выше температуры Солнца в 250 000 раз! К сожалению, время жизни вещества ограничено триллионной одной триллионной секунды.

5. Самая едкая кислота

В этой номинации чемпионом становится фторидно-сурьмяная кислота H. Фторидно-сурьмяная кислота в 2×10 16 (двести квинтиллионов) раз более едкая, чем серная кислота. Это очень активное вещество, которое может взорваться при добавлении небольшого количества воды. Испарения этой кислоты смертельно ядовиты.

6. Самое взрывоопасное вещество

Самое взрывоопасное вещество — гептанитрокубан. Он очень дорогой и применяется лишь для научных исследований. А вот чуть менее взрывоопасный октоген успешно применяется в военном деле и в геологии при бурении скважин.

7. Самое радиоактивное вещество

«Полоний-210» — изотоп полония, который не существует в природе, а изготавливается человеком. Используется для создания миниатюрных, но в тоже время, очень мощных источников энергии. Имеет очень короткий период полураспада и поэтому способен вызывать тяжелейшую лучевую болезнь.

8. Самое тяжёлое вещество

Это, конечно же, фуллерит. Его твердость почти в 2 раза выше, чем у натуральных алмазов. Подробнее о фуллерите можно прочитать в нашей статье Самые твердые материалы в мире .

9. Самый сильный магнит

Самый сильный магнит в мире состоит из железа и азота . В настоящее время, широкой общественности недоступны детали об этом веществе, однако уже сейчас известно, что новый супер-магнит на 18% мощнее самых сильных магнитов применяющихся сейчас — неодимовых. Неодимовые магниты изготавливаются из неодима, железа и бора.

10. Самое текучее вещество

Сверхтекучий Гелий II почти не имеет вязкости при температурах близких к абсолютному нулю. Этим свойством обусловлено его уникальное свойство просачиваться и выливаться из сосуда, изготовленного из любого твёрдого материала. Гелий II имеет перспективы использования в качестве идеального термопроводника, в котором не рассеивается тепло.

Среди диковинок, скрытых в глубинах вселенной, вероятно, навсегда сохранит одно из значительных мест небольшая звёздочка близ Сириуса. Эта звезда состоит из вещества, в 60 000 раз более тяжёлого, нежели вода! Когда мы берём в руки стакан ртути, нас удивляет его грузность: он весит около 3 кг. Но что сказали бы мы о стакане вещества, весящем 12 т и требующем для перевозки железнодорожной платформы? Это кажется абсурдом, а между тем таково одно из открытий новейшей астрономии.

Открытие это имеет длинную и в высшей степени поучительную историю. Уже давно было замечено, что блистательный Сириус совершает своё собственное движение среди звёзд не по прямой линии, как большинство других звёзд, а по странному извилистому пути. Чтобы объяснить эти особенности его движения, известный астроном Бессель предположил, что Сириуса сопровождает спутник, своим притяжением «возмущающий» его движение. Это было в 1844 г. — за два года до того, как был открыт Нептун «на кончике пера». А в 1862 г., уже после смерти Бесселя, догадка его получила полное подтверждение, так как заподозренный спутник Сириуса был усмотрен в телескоп.

Спутник Сириуса — так называемый «Сириус В» — обращается около главной звезды в 49 лет на расстоянии, в 20 раз большем, чем Земля вокруг Солнца (т. е. примерно на расстоянии Урана). Это — слабая звёздочка восьмой-девятой величины, но масса её весьма внушительна, почти 0,8 массы нашего Солнца. На расстоянии Сириуса наше Солнце должно было бы светить звездой 1,8-й величины; поэтому если бы спутник Сириуса вмел поверхность, уменьшенную по сравнению с солнечной в соответствии с отношением масс этих светил, то при той же температуре он должен был бы сиять, как звезда примерно второй величины, а не восьмой-девятой. Столь слабую яркость астрономы первоначально объясняли низкой температурой на поверхности этой звезды; её рассматривали как остывающее солнце, покрывающееся уже твёрдой корой.

Но такое допущение оказалось ошибочным. Удалось установить, что скромный спутник Сириуса — вовсе не угасающая звезда, а напротив, принадлежит к звёздам с высокой поверхностной температурой, гораздо более высокой, чем у нашего Солнца. Это совершенно меняет дело. Слабую яркость приходится, следовательно, приписать только малой величине поверхности этой звезды. Вычислено, что она посылает в 360 раз меньше света, чем Солнце; значит, поверхность её должна быть по крайней мере в 360 раз меньше солнечной, а радиус в j/360, т. е. в 19 раз, меньше солнечного. Отсюда заключаем, что объём спутника Сириуса должен составлять менее чем 6800-ю долю объёма Солнца, между тем как масса его составляет почти 0,8 массы дневного светила. Уже это одно говорит о большой уплотнённости вещества этой звезды. Более точный расчёт даёт для диаметра планеты всего 40 000 км, а следовательно, для плотности — то чудовищное число, которое мы привели в начале раздела: в 60 000 раз больше плотности воды.

«Навострите уши, физики: замышляется вторжение в вашу область», — приходят на память слова Кеплера, сказанные им, правда, по другому поводу. Действительно, ничего подобного не мог представить себе до сих пор ни один физик. В обычных условиях столь значительное уплотнение совершенно немыслимо, так как промежутки между нормальными атомами в твёрдых телах слишком малы, чтобы допустимо было сколько-нибудь заметное сжатие их вещества. Иначе обстоит дело в случае «изувеченных» атомов, утративших те электроны, которые кружились вокруг ядер. Потеря электронов уменьшает поперечник атома в несколько тысяч раз, почти не уменьшая его веса; обнажённое ядро меньше нормального атома примерно во столько раз, во сколько муха меньше крупного здания. Сдвигаемые чудовищным давлением, господствующим в недрах звёздного шара, эти уменьшенные атомы-ядра могут сблизиться в тысячи раз теснее, чем нормальные атомы, и создать вещество той неслыханной плотности, какая обнаружена на спутнике Сириуса.

После сказанного не будет казаться невероятным открытие звезды, средняя плотность вещества которой ещё в 500 раз больше, чем у вещества упомянутой ранее звезды Сириус В. Мы говорим о небольшой звёздочке 13-й величины в созвездии Кассиопеи, открытой в конце 1935 г. Будучи по объёму не больше Марса и в восемь раз меньше земного шара, звезда эта обладает массой, почти втрое превышающей массу нашего Солнца (точнее, в 2,8 раза). В обычных единицах средняя плотность её вещества выражается числом 36 000 000 г/см3. Это означает, что 1 см3 такого вещества весил бы на Земле 36 т. Вещество это, следовательно, плотнее золота почти в 2 миллиона раз.

Немного лет назад учёные, конечно, считали бы немыслимым существование вещества в миллионы раз плотнее платины. Бездны мироздания скрывают, вероятно, ещё немало подобных диковинок природы.

error: