ЦУ (ценные указания). Примеры окислительно-восстановительных реакций с решением

Прежде чем приводить примеры окислительно-восстановительных реакций с решением, выделим основные определения, связанные с данными превращениями.

Те атомы или ионы, которые в ходе взаимодействия меняют степень окисления с понижением (принимают электроны), называют окислителями. Среди веществ, обладающих такими свойствами, можно отметить сильные неорганические кислоты: серную, соляную, азотную.

Окислитель

Также к сильным окислителям относятся перманганаты и хроматы щелочных металлов.

Окислитель принимает то в ходе реакции, которое необходимо ему до завершения энергетического уровня (установления завершенной конфигурации).

Восстановитель

Любая схема окислительно-восстановительной реакции предполагает выявление восстановителя. К нему относят ионы или нейтральные атомы, способные повышать в ходе взаимодействия показатель степени окисления (отдают электроны иным атомам).

В качестве типичных восстановителей можно привести атомы металлов.

Процессы в ОВР

Чем еще характеризуются характеризуются изменением степеней окисления у исходных веществ.

Окисление предполагает процесс отдачи отрицательных частиц. Восстановление предполагает принятие их от других атомов (ионов).

Алгоритм разбора

Примеры окислительно-восстановительных реакций с решением предлагаются в различных справочных материалах, предназначенных для подготовки старшеклассников к выпускным испытаниям по химии.

Для того чтобы успешно справиться с предлагаемые в ОГЭ и ЕГЭ заданиями, важно владеть алгоритмом составления и разбора окислительно-восстановительных процессов.

  1. В первую очередь проставляют зарядовые величины у всех элементов в веществах, предложенных в схеме.
  2. Выписываются атомы (ионы) из левой части реакции, которые в ходе взаимодействия, поменяли показатели.
  3. При повышении степени окисления используется знак «-», а при понижении «+».
  4. Между отданными и принятыми электронами определяется наименьшее общее кратное (число, на которое они делятся без остатка).
  5. При делении НОК на электроны, получаем стереохимические коэффициенты.
  6. Расставляем их перед формулами в уравнение.

Первый пример из ОГЭ

В девятом классе далеко не все школьники знают, как решать окислительно-восстановительные реакции. Именно поэтому они допускают множество ошибок, не получают высоких баллов за ОГЭ. Алгоритм действий приведен выше, теперь попробуем отработать его на конкретных примерах.

Особенность заданий, касающихся расстановки коэффициентов в предложенной реакции, выданных выпускникам основной ступени обучения, в том, что и левая, и правая части уравнения даны.

Это существенно упрощает задачу, так как не нужно самостоятельно придумывать продукты взаимодействия, подбирать недостающие исходные вещества.

Например, предлагается с помощью электронного баланса выявить коэффициенты в реакции:

На первый взгляд, в данной реакции не требуются стереохимические коэффициенты. Но, для того, чтобы подтвердить свою точку зрения, необходимо у всех элементов зарядовые числа.

В бинарных соединениях, к которым относится оксид меди (2) и оксид железа (2), сумма степеней окисления равна нулю, учитывая, что у кислорода она -2, у меди и железа данный показатель +2. Простые вещества не отдают (не принимают) электроны, поэтому для них характерна нулевая величина степени окисления.

Составим электронный баланс, показав знаком "+" и "-" количество принятых и отданных в ходе взаимодействия электронов.

Fe 0 -2e=Fe 2+ .

Так как количество принятых и отданных в ходе взаимодействия электронов одинаково, нет смысла находить наименьшее общее кратное, определять стереохимические коэффициенты, ставить их в предложенную схему взаимодействия.

Для того чтобы получить за задание максимальный балл, необходимо не только записать примеры окислительно-восстановительных реакций с решением, но и выписать отдельно формулу окислителя (CuO) и восстановителя (Fe).

Второй пример с ОГЭ

Приведем еще примеры окислительно-восстановительных реакций с решением, которые могут встретиться девятиклассникам, выбравшим химию в качестве выпускного экзамена.

Допустим, предлагается расставить коэффициенты в уравнении:

Na+HCl=NaCl+H 2 .

Для того чтобы справиться с поставленной задачей, сначала важно определить у каждого простого и сложного вещества показатели степеней окисления. У натрия и водорода они будут равны нулю, так как они являются простыми веществами.

В соляной кислоте водород имеют положительную, а хлор - отрицательную степень окисления. После расстановки коэффициентов получим реакцию с коэффициентами.

Первый из ЕГЭ

Как дополнить окислительно-восстановительные реакции? Примеры с решением, встречающиеся на ЕГЭ (11 класс), предполагают дополнение пропусков, а также расстановку коэффициентов.

Например, нужно электронным балансом дополнить реакцию:

H 2 S+ HMnO 4 = S+ MnO 2 +…

Определите восстановитель и окислитель в предложенной схеме.

Как научиться составлять окислительно-восстановительные реакции? Образец предполагает использование определенного алгоритма.

Сначала во всех веществах, данных по условию задачи, необходимо поставить степени окисления.

Далее нужно проанализировать, какое вещество может стать неизвестным продуктом в данном процессе. Поскольку в здесь присутствует окислитель (в его роли выступает марганец), восстановитель (им является сера), в искомом продукте не меняются степени окисления, следовательно, это вода.

Рассуждая о том, как правильно решать окислительно-восстановительные реакции, отметим, что следующим этапом будет составление электронного соотношения:

Mn +7 принимает 3 e= Mn +4 ;

S -2 отдает 2e= S 0 .

Катион марганца является восстановителем, а анион серы - типичный окислитель. Поскольку наименьшим кратным между принятыми и отданными электронами будет 6, получаем коэффициенты: 2, 3.

Последним этапом будет постановка коэффициентов в исходное уравнение.

3H 2 S+ 2HMnO 4 = 3S+ 2MnO 2 + 4H 2 O.

Второй образец ОВР в ЕГЭ

Как правильно составить окислительно-восстановительные реакции? Примеры с решением помогут отработать алгоритм действий.

Предлагается методом электронного баланса заполнить пропуски в реакции:

PH 3 + HMnO 4 = MnO 2 +…+…

Расставляем у всех элементов степени окисления. В данном процессе окислительные свойства проявляются марганцем, входящим в состав а восстановителем должен быть фосфор, меняя свою степень окисления на положительную в фосфорной кислоте.

Согласно сделанному предположению, получаем схему реакции, затем составляем уравнение электронного баланса.

P -3 отдает 8 e и превращается в P +5 ;

Mn +7 принимает 3e, переходя в Mn +4 .

НОК будет 24, поэтому у фосфора должен присутствовать стереометрический коэффициент 3, а у марганца -8.

Ставим коэффициенты в полученный процесс, получаем:

3 PH 3 + 8 HMnO 4 = 8 MnO 2 + 4H 2 O+ 3 H 3 PO 4 .

Третий пример из ЕГЭ

Путем электронно-ионного баланса нужно составить реакцию, указать восстановитель и окислитель.

KMnO 4 + MnSO 4 +…= MnO 2 +…+ H2SO 4 .

По алгоритму расставляем у каждого элемента степени окисления. Далее определяем те вещества, что пропущены в правой и левой частях процесса. Здесь дан восстановитель и окислитель, поэтому в пропущенных соединениях степени окисления не меняются. Упущенным продуктом станет вода, а исходным соединением - сульфат калия. Получаем схему реакции, для которой составим электронный баланс.

Mn +2 -2 e= Mn +4 3 восстановитель;

Mn +7 +3e= Mn +4 2 окислитель.

Записываем коэффициенты в уравнение, суммируя атомы марганца в правой части процесса, так как он относится к процессу диспропорционирования.

2KMnO 4 + 3MnSO 4 + 2H 2 O= 5MnO 2 + K 2 SO 4 + 2H 2 SO 4 .

Заключение

Окислительно-восстановительные реакции имеют особое значение для функционирования живых организмов. Примерами ОВР являются процессы гниения, брожения, нервной деятельности, дыхания, обмена веществ.

Окисление и восстановление актуальны для металлургической и химической промышленности, благодаря таким процессам можно восстанавливать металлы из их соединений, защищать от химической коррозии, подвергать обработке.

Для составления окислительно-восстановительного процесса в органической или необходимо использовать определенный алгоритм действий. Сначала в предложенной схеме расставляют степени окисления, потом определяют те элементы, которые повысили (понизили) показатель, записывают электронный баланс.

При соблюдении последовательности действий, предложенной выше, можно без проблем справиться с заданиями, предлагаемыми в тестах.

Помимо метода электронного баланса, расстановка коэффициентов возможна также путем составления полуреакций.

Реакции, которые называют окислительно-восстановительными (ОВР), происходят с изменением степеней окисления атомов, находящихся в составе молекул реагентов. Эти изменения происходят в связи с переходом электронов от атомов одного элемента к другому.

Процессы, протекающие в природе и осуществляемые человеком, в большинстве своём представляют ОВР. Такие важнейшие процессы, как дыхание, обмен веществ, фотосинтез (6CO2+H2O = C6H12O6 + 6O2), - всё это ОВР.

В промышленности с помощью ОВР получают , серную, соляную кислоты и многое другое.

Восстановление металлов из руд - фактически основа всей металлургической промышленности - тоже окислительно-восстановительные процессы. Например, реакция получения железа из гематита: 2Fe2O3 + 3С = 4Fe+3CO2.

Окислители и восстановители: характеристика

Атомы, которые в процессе химического превращения электроны отдают, называются восстановителями, их степень окисления (СО) в результате увеличивается. Атомы, принимающие электроны, называют окислителями, и их СО уменьшается.

Говорят, что окислители, принимая электроны, восстанавливаются, а восстановители - окисляются в процессе отдачи электронов.

Важнейшие представители окислителей и восстановителей представлены в следующей таблице:

Типичные окислители Типичные восстановители
Простые вещества, состоящие из элементов с высокой электроотрицательностью (неметаллы): йод, фтор, хлор, бром, кислород, озон, сера и т. п. Простые вещества, состоящие из атомов элементов с низкой электроотрицательностью (металлы или неметаллы): водород H2 , углерод C (графит ), цинк Zn, алюминий Al, кальций Ca, барий Ba, железо Fe, хром Cr и так далее.
Молекулы или ионы, содержащие в составе атомы металлов или неметаллов с высокими степенями окисления:
  • оксиды (SO3, CrO3, CuO, Ag2O и др.);
  • кислоты (HClO4, HNO3, HMnO4 и др.);
  • соли (KMnO4, KNO3, K2Cr2O4, Na2Cr2O7, KClO3, FeCl3 и др.).
Молекулы или ионы, имеющие в своём составе атомы металлов или неметаллов с низкими степенями окисления:
  • водородные соединения (HBr, HI, HF, NH3 и т. д.);
  • соли (бескислородных кислот - K2S, NaI, соли сернистой кислоты, MnSO4 и др.);
  • оксиды (CO, NO и др.);
  • кислоты (HNO2, H2SO3, H3PO3 и др.).
Ионные соединения, содержащие катионы некоторых металлов с высокими СО: Pb3+, Au3+, Ag+, Fe3+ и другие. Органические соединения: спирты, кислоты, альдегиды, сахара.

На основе периодического закона химических элементов чаще всего можно предположить окислительно-восстановительные способности атомов того или иного элемента. По уравнению реакции также несложно понять, какие из атомов являются окислителем и восстановителем.

Как определить, является атом окислителем или восстановителем: достаточно записать СО и понять, какие атомы её увеличили впроцессе реакции (восстановители), а какие уменьшили (окислители).

Вещества с двойственной природой

Атомы, имеющие промежуточные СО, способны и принимать и отдавать электроны, в результате этого вещества, содержащие в своём составе такие атомы, будут иметь возможность проявить себя как окислителем, так и восстановителем.

Примером может быть пероксид водорода. Содержащийся в его составе кислород в СО -1 может как принять электрон, так и отдать его.

При взаимодействии с восстановителем пероксид проявляет окислительные свойства, а с окислителем - восстановительные.

Рассмотреть подробнее можно при помощи следующих примеров:

  • восстановление (пероксид выступает как окислитель) при взаимодействии с восстановителем;

SO2 + H2O2 = H2SO4

О -1 +1е = О -2

  • окисление (пероксид является в этом случае восстановителем) при взаимодействии с окислителем.

2KMnO4 + 5H2O2 + 3H2SO4 = 2MnSO4 + 5О2 + K2SO4 + 8H2O

2О -1 -2е = О2 0

Классификация ОВР: примеры

Различают следующие типы окислительно-восстановительных реакций:

  • межмолекулярное окисление-восстановление (окислитель и восстановитель находятся в составе разных молекул);
  • внутримолекулярное окисление-восстановление (окислитель находится в составе той же молекулы, что и восстановитель);
  • диспропорционирование (окислителем и восстановителем является атом одного и того же элемента);
  • репропорционирование (окислитель и восстановитель образуют в результате реакции один продукт).

Примеры химических превращений, относящихся к различным типам ОВР:

  • Внутримолекулярные ОВР - это чаще всего реакции термического разложения вещества:

2KCLO3 = 2KCl + 3O2

(NH4)2Cr2O7 = N2 + Cr2O3 + 4H2O

2NaNO3 = 2NaNO2 + O2

  • Межмолекулярные ОВР:

3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O

2Al + Fe2O3 = Al2O3 + 2Fe

  • Реакции диспропорционирования:

3Br2 + 6KOH = 5KBr + KBrO3 + 6H2O

3HNO2 = HNO3 + 2NO + H2O

2NO2 + H2O = HNO3 + HNO2

4KClO3 = KCl + 3KClO4

  • Реакции репропорционирования:

2H2S + SO2 = 3S + 2H2O

HOCl + HCl = H2O + Cl2

Токовые и бестоковые ОВР

Окислительно-восстановительные реакции также разделяют на токовые и бестоковые.

Первый случай - это получение электрической энергии за счёт химической реакции (такие источники энергии могут использоваться в двигателях машин, в радиотехнических устройствах , приборах управления), либо электролиз, то есть химическая реакция, наоборот, возникает за счёт электроэнергии (с помощью электролиза можно получать различные вещества, обрабатывать поверхности металлов и изделий из них).

Примерами бестоковых ОВР можно назвать процессы горения, коррозии металлов, дыхания и фотосинтеза и т.д.

Метод электронного баланса ОВР в химии

Уравнения большинства химических реакций уравниваются несложным подбором стехиометрических коэффициентов . Однако при подборе коэффициентов для ОВР можно столкнуться с ситуацией, когда количество атомов одних элементов не удаётся уравнять, не нарушая при этом равенство количеств атомов других. В уравнениях таких реакций подбирают коэффициенты методом составления электронного баланса.

Основывается метод на том, что сумма принимаемых окислителем электронов и количество отдаваемых восстановителем приводится к равновесию.

Метод складывается из нескольких этапов:

  1. Записывается уравнение реакции.
  2. Определяются СО элементов.
  3. Определяются элементы, которые в результате реакции изменили свои степени окисления. Отдельно записываются полуреакции окисления и восстановления.
  4. Подбираются множители для уравнений полуреакций так, чтобы уравнять принятые в полуреакции восстановления и отданные в полуреакции окисления электроны.
  5. Подобранные коэффициенты проставляются в уравнение реакции.
  6. Подбираются остальные коэффициенты реакции.

На простом примере взаимодействия алюминия с кислородом удобно написать уравнивание поэтапно:

  • Уравнение: Al + O2 = Al2О3
  • СО у атомов в простых веществах алюминия и кислорода равны 0.

Al 0 + O2 0 = Al +3 2O -2 3

  • Составим полуреакции:

Al 0 -3е = Al +3 ;

O2 0 +4e = 2O -2

  • Подбираем коэффициенты, при умножении на которые сравняется количество принятых и количество отданных электронов будет одинаковым:

Al 0 -3е = Al +3 коэффициент 4;

O2 0 +4e = 2O -2 коэффициент 3.

  • Проставляем коэффициенты в схему реакции:

4 Al + 3 O2 = Al2O3

  • Видно, что для уравнивания всей реакции достаточно поставить коэффициент перед продуктом реакции:

4Al + 3O2 = 2 Al2O3

Примеры заданий на составление электронного баланса

Могут встречаться следующие задания на уравнивания ОВР:

  • Взаимодействие перманганата калия с хлоридом калия в кислой среде с выделением газообразного хлора.

Марганцевокислый калий KMnO4 (перманганат калия, «марганцовка») - сильный окислитель за счёт того, что в KMnO4 степень окисления Mn равна +7. С его помощью часто получают газообразный хлор в лабораторных условиях по следующей реакции:

KCl + KMnO4 + H2SO4 = Cl2 + MnSO4 + K2SO4 + H2O

K +1 Cl -1 + K +1 Mn +7 O4 -2 + H2 +1 S +6 O4 -2 = Cl2 0 + Mn +2 S +6 O4 -2 + K2 +1 S +6 O4 -2 + H2 +1 O -2

Электронный баланс:

Как видно после расстановки СО, атомы хлора отдают электроны, повышая свою СО до 0, а атомы марганца электроны принимают:

Mn +7 +5е = Mn +2 множитель два;

2Cl -1 -2е = Cl2 0 множитель пять.

Проставляем в уравнение коэффициенты в соответствии с подобранными множителями:

10 K +1 Cl -1 + 2 K +1 Mn +7 O4 -2 +H2SO4 = 5 Cl2 0 + 2 Mn +2 S +6 O4 -2 + K2SO4 + H2O

Уравниваем количество остальных элементов:

10KCl + 2KMnO4 + 8 H2SO4 = 5Cl2 + 2MnSO4 + 6 K2SO4 + 8 H2O

  • Взаимодействие меди (Cu) с концентрированной азотной кислотой(HNO3) с выделением газообразного оксида азота (NO2):

Cu + HNO3(конц.) = NO2 ­ + Cu(NO3)2 + 2H2O

Cu 0 + H +1 N +5 O3 -2 = N +4 O2 ­ + Cu +2 (N +5 O3 -2)2 + H2 +1 O -2

Электронный баланс:

Как видно, атомы меди повышают свою СО с нуля до двух, а атомы азота - снижают с +5 до +4

Cu 0 -2е = Cu +2 множитель один;

N +5 +1е = N +4 множитель два.

Проставляем в уравнение коэффициенты:

Cu 0 + 4 H +1 N +5 O3 -2 = 2 N +4 O2 ­ + Cu +2 (N +5 O3 -2)2 + H2 +1 O -2

Cu + 4 HNO3(конц.) = 2 NO2 ­ + Cu (NO3)2 + 2 H2O

  • Взаимодействие дихромата калия с Н2S в кислой среде:

Запишем схему реакции, расставим СО:

К2 +1 Сr2 +6 О7 -2 + Н2 +1 S -2 + Н2 +1 S +6 O4 -2 = S 0 + Сr2 +3 (S +6 O4 -2)3 + K2 +1 S +6 O4 -2 + H2O

S -2 –2e = S 0 коэффициент 3;

2Cr +6 +6e = 2Cr +3 коэффициент 1.

Подставляем:

К2Сr2О7 + 3Н2S + Н2SО4 = 3S + Сr2(SО4)3 + K2SO4 + Н2О

Уравниваем остальные элементы:

К2Сr2О7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4 + 7Н2О

Влияние реакционной среды

Характер среды влияет на протекание тех или иных ОВР. Роль реакционной среды можно проследить на примере взаимодействия перманганата калия (KMnO4) и сульфита натрия (Na2SO3) при различных значениях рН:

  1. Na2SO3 + KMnO4 = Na2SO4 + MnSO4 + K2SO4 (pH <7 кислая среда);
  2. Na2SO3 + KMnO4 = Na2SO4 + MnO2 + KOH (pH =7 нейтральная среда);
  3. Na2SO3 + KMnO4 = Na2SO4 + K2MnO4 + H2O (pH >7 щелочная среда).

Видно, что изменение кислотности среды приводит к образованию разных продуктов взаимодействия одних и тех же веществ. При изменении кислотности среды они происходят и для других реагентов, вступающих в ОВР. Аналогично показанным выше примерам реакции с участием дихромат-иона Cr2O7 2- будут проходить с образованием разных продуктов реакции в различных средах:

в кислой среде продуктом будет Cr 3+ ;

в щелочной - CrO2 — , CrO3 3+ ;

в нейтральной - Cr2O3.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Сибирский государственный индустриальный университет»

Кафедра общей и аналитической химии

Окислительно-восстановительные реакции

Методические указания для выполнения лабораторных и практических занятий

по дисциплинам «Химия», «Неорганическая химия»,

«Общая и неорганическая химия»

Новокузнецк

УДК 544.3(07)

Рецензент

кандидат химических наук, доцент,

зав. кафедрой физхимии и ТМП СибГИУ

А.И. Пошевнева

О-504 Окислительно-восстановительные реакции: метод. указ. / Сиб. гос. индустр. ун-т; сост. : П.Г. Пермяков, Р.М. Белкина, С.В. Зенцова. – Новокузнецк: Изд. центр СибГИУ 2012. – 41 с.

Приведены теоретические сведения, примеры решения задач по теме «Окислительно-восстановительные реакции» по дисциплинам «Химия», «Неорганическая химия», «Общая и неорганическая химия». Представлены лабораторные работы и разработанные авторским коллективом вопросы для самоконтроля, контрольные и тестовые задания для выполнения контрольной и самостоятельной работы.

Предназначено для студентов первого курса всех направлений подготовки.

Предисловие

Методические указания по химии составлены согласно программе для технических направлений высших учебных заведений, предназначены для организации самостоятельной работы по теме «Окислительно-восстановительные реакции» над учебным материалом в аудиторное и неаудиторное время.

Самостоятельная работа при изучении темы «Окислительно-восстановительные реакции» состоит из нескольких элементов: изучение теоретического материала, выполнение контрольных и тестовых заданий по данному методическому указанию и индивидуальные консультации с преподавателем.

В результате самостоятельной работы необходимо освоить основные термины, определения, понятия и овладеть техникой химических расчетов. К выполнению контрольных и тестовых заданий следует приступать только после глубокого изучения теоретического материала и тщательного разбора примеров типовых заданий, приведенных в теоретическом разделе.

Авторы надеются, что методические указания позволят студентам не только успешно освоить предложенный материал по теме «Окислительно-восстановительные реакции», но и станут для них полезными в учебном процессе при освоении дисциплин «Химия», «Неорганическая химия».

Окислительно-восстановительные реакции Термины, определения, понятия

Окислительно-восстановительные реакции – это реакции, сопровождающиеся переходом электронов от одних атомов или ионов к другим, другими словами – это реакции, в результате которых изменяются степени окисления элементов.

Степень окисления – это заряд атома элемента в соединении, вычисленный из условного предположения, что все связи в молекуле являются ионными.

Степень окисления принято указывать арабской цифрой над символом элемента со знаком плюс или минус перед цифрой. Например, если связь в молекуле HCl ионная, то водород и хлор ионы с зарядами (+1) и (–1), следовательно
.


Используя выше указанные правила, рассчитаем степени окисления хрома в K 2 Cr 2 O 7 , хлора в NaClO, серы в H 2 SO 4 , азота в NH 4 NO 2:

2(+1) + 2·х + 7(–2) = 0, х = +6;

+1 + х + (–2) = 0, х = +1;

2(+1) + х + 4(–2) = 0, х = +6;

х+4(+1)=+1, у + 2(–2) = –1,

х = –3, у = +3.

Окисление и восстановление. Окислением называется отдача электронов, в результате чего степень окисления элемента повышается. Восстановлением называется присоединение электронов, в результате чего степень окисления элемента понижается.

Окислительные и восстановительные процессы тесно связаны между собой, так как химическая система только тогда может отдавать электроны, когда другая система их присоединяет (окислительно-восстановительная система ). Присоединяющая электроны система (окислитель ) сама восстанавливается (превращается в соответствующий восстановитель), а отдающая электроны система (восстановитель ), сама окисляется (превращается в соответствующий окислитель).

Пример 1. Рассмотрим реакцию:

Число электронов, отдаваемых атомами восстановителя (калия), равно числу электронов, присоединяемых молекулами окислителя (хлора). Поэтому одна молекула хлора может окислить два атома калия. Уравнивая число принятых и отданных электронов, получаем:

К типичным окислителям относят:

    Элементарные вещества – Cl 2 , Br 2 , F 2 , I 2 , O, O 2 .

    Соединения, в которых элементы проявляют высшую степень окисления (определяется номером группы) –

    Катион Н + и ионы металлов в их высшей степени окисления – Sn 4+ , Cu 2+ , Fe 3+ и т. д.

К типичным восстановителям относят:

Окислительно-восстановительная двойственность. Соединения высшей степени окисления , присущей данному элементу, могут в окислительно-восстановительных реакциях выступать только в качестве окислителей, степень окисления элемента может в этом случае только понижаться. Соединения низшей степени окисления могут быть, наоборот, только восстановителями; здесь степень окисления элемента может только повышаться. Если же элемент находится в промежуточной степени окисления, то его атомы могут, в зависимости от условий, принимать электроны, выступая в качестве окислителя или отдавать электроны, выступая в качестве восстановителя.

Так, например, степень окисления азота в соединениях изменяется в пределах от (– 3) до (+5) (рисунок 1):

NH 3 , NH 4 OH только

восстановители

HNO 3 , соли HNO 3

только окислители

Соединения с промежуточными степенями окисления азота могут выступать в качестве окислителей, восстанавливаясь до низших степеней окисления, или в качестве восстановителей, окисляясь до высших степеней окисления

Рисунок 1 – Изменение степени окисления азота

Метод электронного баланса уравнивания окислительно-восстановительных реакций заключается в выполнении следующего правила: число электронов, отданных всеми частицами восстановителей, всегда равно числу электронов, присоединенных всеми частицами окислителей в данной реакции.

Пример 2. Проиллюстрируем метод электронного баланса на примере окисления железа кислородом:
.

Fe 0 – 3ē = Fe +3 – процесс окисления;

O 2 + 4ē = 2O –2 – процесс восстановления.

В системе восстановителя (полуреакция процесса окисления) атом железа отдает 3 электрона (Приложение А).

В системе окислителя (полуреакция процесса восстановления) каждый атом кислорода принимает по 2 электрона – в сумме 4 электрона.

Наименьшее общее кратное двух чисел 3 и 4 равно 12. Отсюда железо отдает 12 электронов, а кислород принимает 12 электронов:

Коэффициенты 4 и 3, записанные левее полуреакций в процессе суммирования систем, умножаются на все компоненты полуреакций. Суммарное уравнение показывает, сколько молекул или ионов должно получиться в уравнении. Уравнение составлено верно, когда число атомов каждого элемента в обеих частях уравнения одинаково.

Метод полуреакций применяется для уравнивания реакций, протекающих в растворах электролитов. В таких случаях в реакциях принимают участие не только окислитель и восстановитель, но и частицы среды: молекулы воды (Н 2 О), Н + и ОН – – ионы. Более правильным для таких реакций является применение электронно-ионных систем (полуреакций). При составлении полуреакций в водных растворах вводят, при необходимости, молекулы Н 2 О и ионы Н + или ОН – , учитывая среду протекания реакции. Слабые электролиты, малорастворимые (Приложение Б) и газообразные соединения в ионных системах записываются в молекулярной форме (Приложение В).

Рассмотрим в качестве примеров взаимодействия сульфата калия и перманганата калия в кислой и щелочной среде.

Пример 3. Взаимодействие сульфата калия и перманганата калия в кислой среде :

Определим изменение степени окисления элементов и указываем их в уравнении. Высшая степень окисления марганца (+7) в KMnO 4 указывает, что KMnO 4 – окислитель. Сера в соединении K 2 SO 3 имеет степень окисления (+4) – это восстановленная форма по отношению к сере (+6) в соединении K 2 SO 4 . Таким образом, K 2 SO 3 – восстановитель. Реальные ионы, в которых находятся элементы изменяющие степень окисления и их исходные полуреакции принимают следующий вид:

Цель дальнейших действий заключатся в том, чтобы в данных полуреакциях вместо стрелок, отражающих возможное направление реакции, поставить знаки равенства. Это можно будет сделать тогда, когда в левой и правой частях каждой полуреакции будут совпадать виды элементов, число их атомов и суммарные заряды всех частиц. Чтобы добиться этого, используют дополнительные ионы или молекулы среды. Обычно это ионы Н + , ОН – и молекулы воды. В полуреакции
число атомов марганца одинаково, однако не равно число атомов кислорода, поэтому в правую часть полуреакции вводим четыре молекулы воды: . Проведя аналогичные действия (уравнивая кислород) в системе
, получаем
. В обеих полуреакциях появились атомы водорода. Их число уравнивают соответствующим добавлением в другой части уравнений эквивалентным числом ионов водорода.

Теперь уравнены все элементы, входящие в уравнения полуреакций. Осталось уравнять заряды частиц. В правой части первой полуреакции сумма всех зарядов равна +2, в то время как слева заряд +7. Равенство зарядов осуществляется добавлением в левой части уравнения пяти отрицательных зарядов в виде электронов (+5 ē). Аналогично, в уравнении второй полуреакции необходимо вычесть слева 2 ē. Теперь можно поставить знаки равенства в уравнениях обеих полуреакций:

–процесс восстановления;

–процесс окисления.

В рассматриваемом примере отношение числа электронов, принимаемых в процессе восстановления, к числу электронов, высвобождающихся при окислении, равно 5 ׃ 2. Для получения суммарного уравнения реакции надо, суммируя уравнения процессов восстановления и окисления, учесть это соотношение – умножить уравнение восстановления на 2, а уравнение окисления – на 5.

Умножая коэффициенты на все члены уравнений полуреакций и суммируя между собой только правые и только левые их части, получаем окончательное уравнение реакции в ионно-молекулярной форме:

Сокращая подобные члены, методом вычитания одинакового количества ионов Н + и молекул Н 2 О, получаем:

Суммарное ионное уравнение записано правильно, есть соответствие среды с молекулярным. Полученные коэффициенты переносим в молекулярное уравнение:

Пример 4. Взаимодействия сульфата калия и перманганата калия в щелочной среде :

Определяем степени окисления элементов, изменяющих степень окисления (Mn +7 → Mn +6 , S +4 → S +6). Реальные ионы, куда входят данные элементы (
,
). Процессы (полуреакции) окисления и восстановления:

2
– процесс восстановления

1 – процесс окисления

Суммарное уравнение:

В суммарном ионном уравнении есть соответствие среды. Переносим коэффициенты в молекулярное уравнение:

Реакции окисления-восстановления делятся на следующие типы:

    межмолекулярного окисления-восстановления;

    самоокисления-самовосстановления (диспропорционирования);

    внутримолекулярного окисления – восстановления.

Реакции межмолекулярного окисления-восстановления – это реакции, когда окислитель находится в одной молекуле, а восстановитель – в другой.

Пример 5. При окислении гидроксида железа во влажной среде происходит следующая реакция:

4Fe(OH) 2 + OH – – 1ē = Fe(OH) 3 – процесс окисления;

1 О 2 + 2Н 2 О + 4ē = 4OH – – процесс восстановления.

Для того чтобы убедиться в правильности записи электронно-ионных систем необходимо произвести проверку: левая и правая части полуреакций должны содержать одинаковое количество атомов элементов и зарядность. Затем, уравнивая количество принятых и отданных электронов, суммируем полуреакции:

4Fe(OH) 2 + 4OH – + O 2 +2H 2 O = 4Fe(OH) 3 + 4OH –

4Fe(OH) 2 + O 2 +2H 2 O = 4Fe(OH) 3

Реакции самоокисления-самовосстановления (реакции диспропорционирования) – это реакции, в ходе которых часть общего количества элемента окисляется, а другая часть – восстанавливается, характерно для элементов, имеющих промежуточную степень окисления.

Пример 6. При взаимодействии хлора с водой получается смесь соляной и хлорноватистой (НСlО) кислот:

Здесь и окисление и восстановление претерпевает хлор:

1Cl 2 + 2H 2 O – 2ē = 2HClO +2H + – процесс окисления;

1 Cl 2 + 2ē = 2Cl – – процесс восстановления.

2Cl 2 + 2H 2 O = 2HClO + 2HCl

Пример 7 . Диспропорционирование азотистой кислоты:


В данном случае окисление и восстановление претерпевает в составеHNO 2:

Суммарное уравнение:

HNO 2 + 2HNO 2 + H 2 O + 2H + = NO + 3H + + 2NO + 2H 2 O

3HNO 2 = HNO 3 + 2NO + H 2 O

Реакции внутримолекулярного окисления-восстановления – это процесс, когда одна составная часть молекулы служит окислителем, а другая – восстановителем. Примерами внутримолекулярного окисления-восстановления могут быть многие процессы термической диссоциации.

Пример 8. Термическая диссоциация NH 4 NO 2:

Здесь ион NH окисляется, а ион NO восстанавливается до свободного азота:

12NH– 6 ē = N 2 + 8H +

1 2NО + 8Н + + 6 ē = N 2 + 4H 2 O

2NH+ 2NO+ 8H + = N 2 + 8H + + N 2 + 4H 2 O

2NH 4 NO 2 = 2N 2 + 4H 2 O

Пример 9 . Реакция разложения бихромата аммония:

12NH– 6 ē = N 2 + 8H +

1 Сr 2 О + 8Н + + 6 ē = Cr 2 O 3 + 4H 2 O

2NH + Сr 2 О + 8H + = N 2 + 8H + + Cr 2 O 3 + 4H 2 O

(NH 4) 2 Сr 2 О 7 = N 2 + Cr 2 O 3 + 4H 2 O

Окислительно-восстановительные реакции с участием более двух элементов изменяющих степень окисления.

Пример 10. Примером служит реакция взаимодействия сульфида железа с азотной кислотой, где в ходе реакции три элемента (Fe, S, N) изменяют степень окисления:

FeS 2 + HNO 3
Fe 2 (SO 4) 3 + NO + …

Уравнение записано не до конца и использование электронно-ионных систем (полуреакций) позволит закончить уравнение. Рассматривая степени окисления участвующих в реакции элементов, определяем, что в FeS 2 два элемента (Fe, S) окисляются, а окислителем является
(), который восстанавливается до NO:

S –1 → ()

Записываем полуреакцию окисления FeS 2:

FeS 2 → Fe 3+ +

Наличие двух ионов Fe 3+ в Fe 2 (SO 4) 3 предполагает удвоения числа атомов железа при дальнейшей записи полуреакции:

2FeS 2 → 2Fe 3+ + 4

Одновременно уравниваем число атомов серы и кислорода, получаем:

2FeS 2 + 16Н 2 O → 2Fe 3+ + 4
.

32 атома водорода, введением в левую часть уравнения в составе 16 молекул Н 2 О уравниваем добавлением эквивалентного числа ионов водорода (32 Н +) в правую часть уравнения:

2FeS 2 + 16Н 2 O → 2Fe 3+ + 4
+ 32Н +

Зарядность правой части уравнения +30. Для того чтобы в левой части было тоже самое (+30) необходимо вычесть 30 ē:

1 2FeS 2 + 16Н 2 O – 30 ē = 2Fe 3+ + 4
+ 32Н + – окисление;

10 NО + 4Н + + 3 ē = NО + 2H 2 O – восстановление.

2FeS 2 +16Н 2 O+10NО+40Н + = 2Fe 3+ + 4
+ 32Н + + 10NО + 20H 2 O

2FeS 2 +10НNО 3 + 30Н + = Fe 2 (SO 4) 3 + 10NО +
+ 32Н + + 4H 2 O

Н 2 SO 4 +30Н +

Сокращаем обе части уравнения на одинаковое число ионов (30 Н +) методом вычитания и получаем:

2FeS 2 +10НNО 3 = Fe 2 (SO 4) 3 + 10NО + Н 2 SO 4 + 4H 2 O

Энергетика окислительно-восстановительных реакций . Условием самопроизвольного протекания любого процесса, в том числе и окислительно-восстановительной реакции является неравенство ∆G < 0, где ∆G – энергия Гиббса и чем меньше ∆G, т.е. чем больше его отрицательное значение, тем более реакционноспособнее окислительно-восстановительная система. Для реакций окисления-восстановления:

∆G = –n·F·ε,

где n – число электронов, передаваемое восстановителем окислителю в элементарном акте окисления-восстановления;

F – число Фарадея;

ε – электродвижущая сила (Э.Д.С.) окислительно-восстановительной реакции.

Электродвижущая сила окислительно-восстановительной реакции определяется разностью потенциалов окислителя и восстановителя:

ε = Е ок – Е в,

В стандартных условиях:

ε ° = Е ° ок – Е ° в.

Итак, если условием самопроизвольного протекания процесса является неравенство ∆G ° < 0, то это возможно, когда n·F·ε ° > 0. Если n и F числа положительные, то необходимо, чтобы ε ° > 0, а это возможно, когда Е ° ок > Е ° в. Отсюда следует, что условием самопроизвольного протекания окислительно-восстановительной реакции является неравенство Е ° ок > Е ° в.

Пример 11. Определите возможность протекания окислительно-восстановительной реакции:

Определив степени окисления элементов, изменяющих степень окисления, запишем полуреакции окислителя и восстановителя с указанием их потенциалов:

Сu – 2ē = Сu 2+ Е ° в = +0,34 В

2Н + + 2ē = Н 2 Е ° ок = 0,0 В

Из полуреакций видно, что Е ° ок < Е ° в, это говорит о том, что рассматриваемый процесс термодинамически невозможен (∆G ° > 0). Данная реакция возможна только в обратном направлении, для которого ∆G ° < 0.

Пример 12. Рассчитайте энергию Гиббса и константу равновесия реакции восстановления перманганата калия сульфатом железа (II).

Полуреакции окислителя и восстановителя:

2 Е ° ок = +1,52В

5 2Fe 2+ – 2 ē = 2Fe 3+ Е ° в = +0,77 В

∆G ° = –n·F·ε ° = –n·F(Е ° ок – Е ° в),

где n = 10, так как восстановитель отдает 10 ē, окислитель принимает 10 ē в элементарном акте окисления-восстановления.

∆G ° = –10·69500(1,52–0,77) = –725000 Дж,

∆G ° = –725 кДж.

Учитывая, что стандартное изменение энергии Гиббса связано с ее константой равновесия (К с) соотношением:

∆G ° = –RTlnК с или n·F·ε = RTlnК с,

где R = 8,31 Дж·моль –1 ·К –1 ,

F
96500 Кл·моль –1 , Т = 298 К.

Определяем константу равновесия для данной реакции, проставив в уравнении постоянные величины, переведя натуральный логарифм в десятичный:

К с = 10 127 .

Полученные данные говорят о том, что рассматриваемая реакция восстановления перманганата калия реакционноспособна (∆G ° = – 725 кДж), процесс протекает слева направо и практически необратима (К с = 10 127).

18. Окислительно-восстановительные реакции (продолжение 1)


18.5. ОВР пероксида водорода

В молекулах пероксида водорода H 2 O 2 атомы кислорода находятся в степени окисления –I. Это промежуточная и не самая устойчивая степень окисления атомов этого элемента, поэтому пероксид водорода проявляет и окислительные, и восстановительные свойства.

Окислительно-восстановительная активность этого вещества зависит от концентрации. В обычно используемых растворах с массовой долей 20 % пероксид водорода довольно сильный окислитель, в разбавленных растворах его окислительная активность снижается. Восстановительные свойства для пероксида водорода менее характерны, чем окислительные, и также зависят от концентрации.

Пероксид водорода – очень слабая кислота (см. приложение 13), поэтому в сильнощелочных растворах его молекулы превращаются гидропероксид-ионы.

В зависимости от реакции среды и от того, окислителем или восстановителем является пероксид водорода в данной реакции, продукты окислительно-восстановительного взаимодействия будут разными. Уравнения полуреакций для всех этих случаев приведены в таблице 1.

Таблица 1

Уравнения окислительно-восстановительных полуреакций H 2 O 2 в растворах

Реакция среды

H 2 O 2 окислитель

H 2 O 2 восстановитель

Кислотная
Нейтральная H 2 O 2 + 2e – = 2OH H 2 O 2 + 2H 2 O – 2e – = O 2 + 2H 3 O
Щелочная HO 2 + H 2 O + 2e – = 3OH

Рассмотрим примеры ОВР с участием пероксида водорода.

Пример 1. Составьте уравнение реакции, протекающей при добавлении раствора йодида калия к раствору пероксида водорода, подкисленному серной кислотой.

1 H 2 O 2 + 2H 3 O + 2e – = 4H 2 O
1 2I – 2e – = I 2

H 2 O 2 + 2H 3 O +2I = 4H 2 O + I 2
H 2 O 2 + H 2 SO 4 + 2KI = 2H 2 O + I 2 + K 2 SO 4

Пример 2. Составьте уравнение реакции между перманганатом калия и пероксидом водорода в водном растворе, подкисленном серной кислотой.

2 MnO 4 + 8H 3 O + 5e – = Mn 2 + 12H 2 O
5 H 2 O 2 + 2H 2 O – 2e – = O 2 + 2H 3 O

2MnO 4 + 6H 3 O+ + 5H 2 O 2 = 2Mn 2 + 14H 2 O + 5O 2
2KMnO 4 + 3H 2 SO 4 + 5H 2 O 2 = 2MnSO 4 + 8H 2 O + 5O 2 + K 2 SO 4

Пример 3. Составьте уравнение реакции пероксида водорода с йодидом натрия в растворе в присутствии гидроксида натрия.

3 6 HO 2 + H 2 O + 2e – = 3OH
1 2 I + 6OH – 6e – = IO 3 + 3H 2 O

3HO 2 + I = 3OH + IO 3
3NaHO 2 + NaI = 3NaOH + NaIO 3

Без учета реакции нейтрализации между гидроксидом натрия и пероксидом водорода это уравнение часто записывают так:

3H 2 O 2 + NaI = 3H 2 O + NaIO 3 (в присутствии NaOH)

Это же уравнение получится, если сразу (на стадии составления баланса) не принимать во внимание образование гидропероксид-ионов.

Пример 4. Составьте уравнение реакции, протекающей при добавлении диоксида свинца к раствору пероксида водорода в присутствии гидроксида калия.

Диоксид свинца PbO 2 – очень сильный окислитель, особенно в кислотной среде. Восстанавливаясь в этих условиях, он образует ионы Pb 2 . В щелочной среде при восстановлении PbO 2 образуются ионы .

1 PbO 2 + 2H 2 O + 2e – = + OH
1 HO 2 + OH – 2e – = O 2 + H 2 O

PbO 2 + H 2 O + HO 2 = + O 2

Без учета образования гидропероксид-ионов уравнение записывается так:

PbO 2 + H 2 O 2 + OH = + O 2 + 2H 2 O

Если по условию задания добавляемый раствор пероксида водорода был щелочным, то молекулярное уравнение следует записывать так:

PbO 2 + H 2 O + KHO 2 = K + O 2

Если же в реакционную смесь, содержащую щелочь, добавляется нейтральный раствор пероксида водорода, то молекулярное уравнение может быть записано и без учета образования гидропероксида калия:

PbO 2 + KOH + H 2 O 2 = K + O 2

18.6. ОВР дисмутации и внутримолекулярные ОВР

Среди окислительно-восстановительных реакций выделяют реакции дисмутации (диспропорционирования, самоокисления-самовосстановления) .

Примером известной вам реакции дисмутации является реакция хлора с водой:

Cl 2 + H 2 O HCl + HClO

В этой реакции половина атомов хлора(0) окисляется до степени окисления +I, а вторая половина восстанавливается до степени окисления –I:

Составим методом электронно-ионного баланса уравнение аналогичной реакции, протекающей при пропускании хлора через холодный раствор щелочи, например KOH:

1 Cl 2 + 2e – = 2Cl
1 Cl 2 + 4OH – 2e – = 2ClO + 2H 2 O

2Cl 2 + 4OH = 2Cl + 2ClO + 2H 2 O

Все коэффициенты в этом уравнении имеют общий делитель, следовательно:

Cl 2 + 2OH = Cl + ClO + H 2 O
Cl 2 + 2KOH = KCl + KClO + H 2 O

Дисмутация хлора в горячем растворе протекает несколько иначе:

5 Cl 2 + 2e – = 2Cl
1 Cl 2 + 12OH – 10e – = 2ClO 3 + 6H 2 O

3Cl 2 + 6OH = 5Cl + ClO 3 + 3H 2 O
3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

Большое практическое значение имеет дисмутация диоксида азота при его реакции c водой (а ) и с растворами щелочей (б ):

а ) NO 2 + 3H 2 O – e – = NO 3 + 2H 3 O NO 2 + 2OH – e – = NO 3 + H 2 O
NO 2 + H 2 O + e – = HNO 2 + OH NO 2 + e – = NO 2

2NO 2 + 2H 2 O = NO 3 + H 3 O + HNO 2

2NO 2 + 2OH = NO 3 + NO 2 + H 2 O

2NO 2 + H 2 O = HNO 3 + HNO 2

2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O

Реакции дисмутации протекают не только в растворах, но и при нагревании твердых веществ, например, хлората калия:

4KClO 3 = KCl + 3KClO 4

Характерным и очень эффектным примером внутримолекулярной ОВР является реакция термического разложения дихромата аммония (NH 4) 2 Cr 2 O 7 . В этом веществе атомы азота находятся в своей низшей степени окисления (–III), а атомы хрома – в высшей (+VI). При комнатной температуре это соединение вполне устойчиво, но при нагревании интенсивно разлагается. При этом хром(VI) переходит в хром(III) – наиболее устойчивое состояние хрома, а азот(–III) – в азот(0) – также наиболее устойчивое состояние. С учетом числа атомов в формульной единице уравнения электронного баланса:

2Cr +VI + 6e – = 2Cr +III
2N –III – 6e – = N 2 ,

а само уравнение реакции:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O .

Другой важный пример внутримолекулярной ОВР – термическое разложение перхлората калия KClO 4 . В этой реакции хлор(VII), как и всегда, когда он выступает в роли окислителя, переходит в хлор(–I), окисляя кислород(–II) до простого вещества:

1 Cl +VII + 8e – = Cl –I
2 2O –II – 4e – = O 2

и, следовательно, уравнение реакции

KClO 4 = KCl + 2O 2

Аналогично разлагается при нагревании и хлорат калия KClO 3 , если разложение проводить в присутствии катализатора (MnO 2): 2KClO 3 = 2KCl + 3O 2

В отсутствие катализатора протекает реакция дисмутации.
К группе внутримолекулярных ОВР относятся и реакции термического разложения нитратов.
Обычно процессы, протекающие при нагревании нитратов довольно сложны, особенно в случае кристаллогидратов. Если в кристаллогидрате молекулы воды удерживаются слабо, то при слабом нагревании происходит обезвоживание нитрата [например, LiNO 3 . 3H 2 O и Ca(NO 3) 2 4H 2 O обезвоживаются до LiNO 3 и Ca(NO 3) 2 ], если же вода связана прочнее [как, например, в Mg(NO 3) 2 . 6H 2 O и Bi(NO 3) 3 . 5H 2 O], то происходят своего рода реакции " внутримолекулярного гидролиза" с образованием основных солей – гидроксид-нитратов , которые при дальнейшем нагревании могут переходить в оксид-нитраты { и (NO 3) 6 }, последние при более высокой температуре разлагаются до оксидов.

Безводные нитраты при нагревании могут разлагаться до нитритов (если они существуют и при этой температуре еще устойчивы), а нитриты – до оксидов. Если нагревание проводится до достаточно высокой температуры, или соответствующий оксид малоустойчив (Ag 2 O, HgO), то продуктом термического разложения может быть и металл (Cu, Cd, Ag, Hg).

Несколько упрощенная схема термического разложения нитратов показана на рис. 5.

Примеры последовательных превращений, протекающих при нагревании некоторых нитратов (температуры приведены в градусах Цельсия):

KNO 3 KNO 2 K 2 O;

Ca(NO 3) 2 . 4H 2 O Ca(NO 3) 2 Ca(NO 2) 2 CaO;

Mg(NO 3) 2 . 6H 2 O Mg(NO 3)(OH) MgO;

Cu(NO 3) 2 . 6H 2 O Cu(NO 3) 2 CuO Cu 2 O Cu;

Bi(NO 3) 3 . 5H 2 O Bi(NO 3) 2 (OH) Bi(NO 3)(OH) 2 (NO 3) 6 Bi 2 O 3 .

Несмотря на сложность происходящих процессов, при ответе на вопрос, что получится при " прокаливании" (то есть при температуре 400 – 500 o С) соответствующего безводного нитрата, обычно руководствуются следующими предельно упрощенными правилами:

1) нитраты наиболее активных металлов (в ряду напряжений – левее магния) разлагаются до нитритов;
2) нитраты менее активных металлов (в ряду напряжений – от магния до меди) разлагаются до оксидов;
3) нитраты наименее активных металлов (в ряду напряжений – правее меди) разлагаются до металла.

Используя эти правила, следует помнить, что в таких условиях
LiNO 3 разлагается до оксида,
Be(NO 3) 2 разлагается до оксида при более высокой температуре,
из Ni(NO 3) 2 помимо NiO может получиться и Ni(NO 2) 2 ,
Mn(NO 3) 2 разлагается до Mn 2 O 3 ,
Fe(NO 3) 2 разлагается до Fe 2 O 3 ;
из Hg(NO 3) 2 кроме ртути может получиться и ее оксид.

Рассмотрим типичные примеры реакций, относящихся к этим трем типам:

KNO 3 KNO 2 + O 2

2 N +V +2e– = N +III
1 2O– II – 4e– = O 2

2KNO 3 = 2KNO 2 + O 2

Zn(NO 3) 2 ZnO + NO 2 + O 2

N +V + e– = N +IV
2O– II – 4e– = O 2

2Zn(NO 3) 2 = 2ZnO + 4NO 2 + O 2

AgNO 3 Ag + NO 2 + O 2

18.7. Окислительно-восстановительные реакции конмутации

Эти реакции могут быть как межмолекулярными, так и внутримолекулярными. Например, внутримолекулярные ОВР, протекающие при термическом разложении нитрата и нитрита аммония, относятся к реакциям конмутации, так как здесь происходит выравнивание степени окисления атомов азота:

NH 4 NO 3 = N 2 O + 2H 2 O (около 200 o С)
NH 4 NO 2 = N 2 + 2H 2 O (60 – 70 o С)

При более высокой температуре (250 – 300 o С) нитрат аммония разлагается до N 2 и NO, а при еще более высокой (выше 300 o С) – до азота и кислорода, и в том и в другом случае образуется вода.

Примером межмолекулярной реакции конмутации является реакция, протекающая при сливании горячих растворов нитрита калия и хлорида аммония:

NH 4 + NO 2 = N 2 + 2H 2 O

NH 4 Cl + KNO 2 = KCl + N 2 + 2H 2 O

Если проводить аналогичную реакцию, нагревая смесь кристаллических сульфата аммония и нитрата кальция, то, в зависимости от условий, реакция может протекать по-разному:

(NH 4) 2 SO 4 + Ca(NO 3) 2 = 2N 2 O + 4H 2 O + CaSO 4 (t < 250 o C)
(NH 4) 2 SO 4 + Ca(NO 3) 2 = 2N 2 + O 2 + 4H 2 O + CaSO 4 (t > 250 o С)
7(NH 4) 2 SO 4 + 3Ca(NO 3) 2 = 8N 2 + 18H 2 O + 3CaSO 4 + 4NH 4 HSO 4 (t > 250 o С)

Первая и третья из этих реакций – реакции конмутации, вторая – более сложная реакция, включающая как конмутацию атомов азота, так и окисление атомов кислорода. Какая из реакций будет протекать при температуре выше 250 o С, зависит от соотношения реагентов.

Реакции конмутации, приводящие к образованию хлора, протекают при обработке соляной кислотой солей кислородсодержащих кислот хлора, например:

6HCl + KClO 3 = KCl + 3Cl 2 + 3H 2 O

Также по реакции конмутации образуется сера из газообразных сероводорода и диоксида серы:

2H 2 S + SO 2 = 3S + 2H 2 O

ОВР конмутации довольно многочисленны и разнообразны – к ним относятся даже некоторые кислотно-основные реакции, например:

NaH + H 2 O = NaOH + H 2 .

Для составления уравнений ОВР конмутации используется как электронно-ионный, так и электронный баланс, в зависимости от того, в растворе протекает данная реакция или нет.

18.8. Электролиз

Изучая главу IX, вы познакомились с электролизом расплавов различных веществ. Так как подвижные ионы присутствуют и в растворах, электролизу могут быть подвергнуты также растворы различных электролитов.

Как при электролизе расплавов, так и при электролизе растворов, обычно используют электроды, изготовленные из материала, не вступающего в реакцию (графита, платины и т. п.), но иногда электролиз проводят и с " растворимым" анодом. " Растворимый" анод используют в тех случаях, когда необходимо получить электрохимическим способом соединение элемента, из которого изготовлен анод. При электролизе имеет большое значение разделены анодное и катодное пространство, или электролит в процессе реакции перемешивается – продукты реакции в этих случаях могут оказаться разными.

Рассмотрим важнейшие случаи электролиза.

1. Электролиз расплава NaCl. Электроды инертные (графитовые), анодное и катодное пространства разделены. Как вы уже знаете, в этом случае на катоде и на аноде протекают реакции:

K: Na + e – = Na
A: 2Cl – 2e – = Cl 2

Записав таким образом уравнения реакций, протекающих на электродах, мы получаем полуреакции, с которыми можем поступать точно так же, как в случае использования метода электронно-ионного баланса:

2 Na + e – = Na
1 2Cl – 2e – = Cl 2

Сложив эти уравнения полуреакций, получаем ионное уравнение электролиза

2Na + 2Cl 2Na + Cl 2­

а затем и молекулярное

2NaCl 2Na + Cl 2­

В этом случае катодное и анодное пространства должны быть разделены для того, чтобы продукты реакции не реагировали между собой. В промышленности эта реакция используется для получения металлического натрия.

2. Электролиз расплава K 2 CO 3 . Электроды инертные (платиновые). Катодное и анодное пространства разделены.

4 K + e – = K
1 2CO 3 2 – 4e – = 2CO 2 + O 2

4K+ + 2CO 3 2 4K + 2CO 2 + O 2
2K 2 CO 3 4K + 2CO 2 + O 2

3. Электролиз воды (H 2 O). Электроды инертные.

2 2H 3 O + 2e – = H 2 + 2H 2 O
1 4OH – 4e – = O 2 + 2H 2 O

4H 3 O + 4OH 2H 2 + O 2 + 6H 2 O

2H 2 O 2H 2 + O 2

Вода – очень слабый электролит, в ней содержится очень мало ионов, поэтому электролиз чистой воды протекает крайне медленно.

4. Электролиз раствора CuCl 2 . Электроды графитовые. В системе присутствуют катионы Cu 2 и H 3 O , а также анионы Cl и OH . Ионы Cu 2 более сильные окислители, чем ионы H 3 O (см. ряд напряжений), поэтому на катоде прежде всего будут разряжаться ионы меди, и только, когда их останется очень мало, будут разряжаться ионы оксония. Для анионов можно руководствоваться следующим правилом:

error: