Свойства силы трения качения. Сила трения

Трением качения называется трение движения, при котором скорости соприкасающихся тел в точках касания одинаковы по значению и направлению.

Если движение двух соприкасающихся тел происходит при одновременном качении и скольжении, то в этом случае возникает трение качения с проскальзыванием .

Рассмотрим качение без скольжения цилиндра весом G и радиусом r по горизонтальной опорной плоскости (см. рис. 1) . В результате действия силы G произойдет деформация цилиндра и опорной плоскости в месте их соприкосновения. Если сила P не действует, то сила G будет уравновешиваться реакцией R опорной плоскости и цилиндр будет находиться в покое (реакция R будет вертикальна). Если к цилиндру приложить небольшую силу Р , то он по-прежнему будет находиться в покое. При этом произойдет перераспределение давлений на опорную поверхность и полная реакция R пройдет через некоторую точку А и через точку О (согласно теореме о равновесии трех непараллельных сил ).

При каком-то критическом значении силы Р цилиндр придет в движение и будет равномерно перекатываться по опорной плоскости, а точка А займет при этом крайнее правое положение. Отсюда видно, что трение качения в состоянии покоя может изменяться от нуля до какого-то максимального значения, причем максимальным оно будет в момент начала движения.

Обозначим k максимальное значение плеча силы G относительно точки А . Тогда в случае равномерного перекатывания цилиндра (т. е. равновесия) :

ΣM А = 0 или – Pr + Gh = 0 ,

причем плечо силы Р вследствие незначительности деформации тел считаем равным радиусу цилиндра r (сила Р – горизонтальная). Из последнего равенства определим силу, необходимую для равномерного качения цилиндра:

Р = kG/r

Максимальное значение плеча k называется коэффициентом трения качения; он имеет размерность длины и выражается в сантиметрах или миллиметрах.

Из полученной формулы видно, что усилие, необходимое для перекатывания цилиндрического катка, прямо пропорционально его весу G и обратно пропорционально радиусу r катка. Из этого следует, что каток, имеющий бóльший диаметр, легче перекатывать.

Коэффициент трения качения определяется опытным путем, его значения для различных условий приводятся в справочниках. Ниже приведены ориентировочные значения коэффициента трения качения k для катка по плоскости (см) :

    Мягкая сталь по мягкой стали............................0,005

    Закаленная сталь по закаленной стали..............0,001

    Чугун по чугуну................................................0,005

    Дерево по стали......................................0,03...0,04

    Дерево по дереву...................................0,05...0,08

    Резиновая шина по шоссе...............................0,24

Коэффициент трения качения практически не зависит от скорости движения тела.

В ряде случаев при изучении трения качения активные и реактивные силы, действующие на каток, удобно представлять в ином виде (см. рисунок 2а, б) .

Разложим полную реакцию R опорной поверхности на составляющие N и F тр , тогда:

R = N + F тр ,

где F тр – сила трения качения; N - реакция, нормальная к недеформированной опорной плоскости.

Составим три уравнения равновесия катка:

ΣX = 0; P – F тр = 0;ΣY = 0; N – G = 0;

ΣM А = 0; - Pr + Gk = 0.

Из этих уравнений имеем:

P = F тр ; N = G ; Pr = Gk .

Введем обозначения Pr = M , Gk = M тр , где М – момент трения качения, М тр – момент трения.

Возможны следующие частные случаи качения цилиндрического катка:

    М ≥ М тр , но Р < F тр – имеет место только качение;

    М < М тр , но Р > F тр – имеет место только скольжение;

    М > М тр , но Р > F тр – качение с проскальзыванием;

    М < М тр , но Р < F тр – каток находится в состоянии покоя.

Трение качения в большинстве случаев меньше трения скольжения, поэтому вместо подшипников скольжения широко применяют шариковые, роликовые или другие подшипники качения, которые, несмотря на более высокую стоимость, дают значительный выигрыш в экономии энергии из-за уменьшения потерь на трение.

Смазочные материалы

Смазочные материалы классифицируются, в первую очередь, по физическому состоянию.

Существуют:

    газообразные

  • консистентные

    твердые смазочные материалы

Смазочные материалы предназначены для снижения трения и износа.

В зависимости от нагрузки они выполняют следующие задачи:

    отвод тепла

    защита поверхностей

    пропускание тока

Выполняя эти задачи, различные смазочные материалы ведут себя неодинаково.

Жидкие смазочные материалы

    отвод тепла

    защита поверхностей

    пропускание тока

    отвод частиц, вызывающих износ

К жидким смазочным материалам относятся:

    жирные масла

    минеральные масла

    синтетические масла

Жирные масла не очень подходят для смазки. Хотя они и обладают хорошим смазывающим эффектом, они неустойчивы к низким температурам и чувствительны к окислителям. В технических областях бесспорными лидерами являются минеральные масла.

В наше время все большее значение приобретают синтетические масла

Их преимущества:

    повышенная устойчивость к окислению

    устойчивость к низким и высоким температурам

    долговременная смазка, смазка на весь срок службы изделия

Антикоррозийные материалы и разделительные агенты представляют собой специальные продукты, одной из задач которых является также и смазка.

Консистентные смазочные материалы

Эти материалы выполняют следующие задачи:

    защита поверхностей

    пропускание тока

    удерживание от попадания инородных веществ

К консистентным смазочным материалам относятся:

    пластичные смазки

    смазочные пасты

    смазывающие воски

Смазывающие воски имеют высоко молекулярную углеводородную основу. Предпочтительными областями их применения являются граничная и парциальная смазка при низких скоростях. Пластичные смазки изготавливаются на основе смазочных масел и имеют консистентную структуру благодаря загустителю. Их можно применять как при эластогидродинамической смазке, так и при граничной смазке и парциальной смазке деталей. Смазочные пасты отличаются высоким содержанием твердых смазочных веществ. Они применяются при граничной и парциальной смазке деталей для подвижной, переходной или прессовой посадки. Консистентные смазочные материалы применяются тогда, когда из-за недостаточного уплотнения зазора смазка не должна вытекать и/или когда смазка должна быть устойчивой к жидкостям. В наши дни эти материалы имеют огромное значение, так как при их минимальном расходе обеспечивается максимальный срок службы деталей и оборудования.

Твердые смазочные материалы

Эти материалы могут выполнять следующие задачи:

    защита поверхностей

    материалы для трибосистем

    лаки для смазки

Помимо этого к ним относятся порошковые полимеры или металлические материалы, а также минералы, например, политетрафторэтилен, медь, графит или дисульфид молибдена. Для применения в качестве порошков они подходят плохо. Поэтому их используют в качестве присадок, которые обеспечивают защиту как от трения, так и от износа. Твердые смазочные материалы применяются, как правило, для сухой смазки. В результате получается граничная смазка, которая при включении жидких или консистентных смазок в материалы для трибосистем может использоваться для парциальной смазки. Твердые смазочные материалы применяются преимущественно в тех случаях, когда из-за функциональных особенностей или загрязнения жидкие или консистентные смазки не являются идеальным решением проблемы, а для ее решения достаточно свойств твердых смазочных материалов.

Тре́ние каче́ния - сопротивление движению, возникающее при перекатывании тел друг по другу т.е. сопротивление качению одного тела (катка) по поверхности другого. Причина трения качения - деформация катка и опорной поверхности, а также силы адгезии . Контактное напряжение в пятне приводит к упругому и/или пластическому деформированию тел, что влечёт микропроскальзывание поверхностей, пластическое течение в пятне контакта и вязкоупругий гистерезис. Как и адгезивное взаимодействие, все эти процессы термодинамически необратимы и ведут к потере энергии, т.е. вызывают сопротивление качению . При этом обычно предполагается, что катящееся тело (колесо) не осуществляет тяговую или тормозную функцию (например, колесо локомотива, разгоняющего состав или заторможенное колесо вагона), так как при этом возникают дополнительные потери на трение в пятне контакта, вызванные не только нормальным контактным напряжением, а ещё и касательным, т.е. под трением качения понимается чистое трение качения .

Проявляется, например, между элементами подшипников качения , между автомобильной шиной колеса автомобиля и дорожным полотном. В большинстве случаев величина трения качения гораздо меньше величины трения скольжения при прочих равных условиях, и потому качение является распространенным видом движения в технике. Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

Трение качения играет огромную роль в современной технике. Оно возникает при вращении колёс и других вращающихся деталей, которые есть почти во всех станках и транспортных машинах. Замена трения скольжения на трение качения путём изобретения колеса было величайшим событием в истории цивилизации .

Сила трения в земных условиях сопутствует любым движениям тел. Она возникает при соприкосновении двух тел, если эти тела двигаются относительно друг друга. Направлена сила трения всегда вдоль поверхности соприкосновения, в отличие от силы упругости, которая направлена перпендикулярно (рис. 1, рис. 2).

Рис. 1. Отличие направлений силы трения и силы упругости

Рис. 2. Поверхность действует на брусок, а брусок – на поверхность

Существуют сухие и не сухие виды трения. Сухой вид трения возникает при соприкосновении твердых тел.

Рассмотрим брусок, лежащий на горизонтальной поверхности (рис. 3). На него действуют сила тяжести и сила реакции опоры . Подействуем на брусок с небольшой силой , направленной вдоль поверхности. Если брусок не сдвигается с места, значит, приложенная сила уравновешивается другой силой, которая называется силой трения покоя .

Рис. 3. Сила трения покоя

Сила трения покоя () противоположна по направлению и равна по модулю силе, стремящейся сдвинуть тело параллельно поверхности его соприкосновения с другим телом.

При увеличении «сдвигающей» силы брусок остается в покое, следовательно, сила трения покоя также увеличивается. При некоторой, достаточно большой, силе брусок придет в движение. Это означает, что сила трения покоя не может увеличиваться до бесконечности – существует верхний предел, больше которого она быть не может. Величина этого предела – максимальная сила трения покоя.

Подействуем на брусок с помощью динамометра.

Рис. 4. Измерение силы трения с помощью динамометра

Если динамометр действует на него с силой , то можно увидеть, что максимальная сила трения покоя становится больше при увеличении массы бруска, то есть при увеличении силы тяжести и силы реакции опоры. Если провести точные измерения, то они покажут, что максимальная сила трения покоя прямо пропорциональна силе реакции опоры:

где – модуль максимальной силы трения покоя; N – сила реакции опоры (нормального давления); – коэффициент трения покоя (пропорциональности). Следовательно, максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Если провести опыт с динамометром и бруском постоянной массы, при этом переворачивая брусок на разные стороны (меняя площадь соприкосновения со столом), то можно увидеть, что максимальная сила трения покоя не меняется (рис. 5). Следовательно, от площади соприкосновения максимальная сила трения покоя не зависит.

Рис. 5. Максимальное значение силы трения покоя не зависит от площади соприкосновения

Более точные исследования показывают, что трение покоя полностью определяется приложенной к телу силой и формулой .

Сила трения покоя не всегда препятствует движению тела. Например, сила трения покоя действует на подошву обуви, при этом сообщая ускорение и позволяя ходить по земле без проскальзывания (рис. 6).

Рис. 6. Сила трения покоя, действующая по подошву обуви

Еще один пример: сила трения покоя, действующая на колесо автомобиля, позволяет начинать движение без пробуксовки (рис. 7).

Рис. 7. Сила трения покоя, действующая на колесо автомобиля

В ременных передачах также действует сила трения покоя (рис. 8).

Рис. 8. Сила трения покоя в ременных передачах

Если тело движется, то сила трения, действующая на него со стороны поверхности, не исчезает, такой вид трения называется трение скольжения . Измерения показывают, что сила трения скольжения по величине практически равна максимальной силе трения покоя (рис. 9).

Рис. 9. Сила трения скольжения

Сила трения скольжения всегда направлена против скорости движения тела, то есть она препятствует движению. Следовательно, при движении тела только под действием силы трения она сообщает ему отрицательное ускорение, то есть скорость тела постоянно уменьшается.

Величина силы трения скольжения также пропорциональна силе нормального давления.

где – модуль силы трения скольжения; N – сила реакции опоры (нормального давления); – коэффициент трения скольжения (пропорциональности).

На рисунке 10 изображен график зависимости силы трения от приложенной силы. На нем видно два различных участка. Первый участок, на котором сила трения возрастает при увеличении приложенной силы, соответствует трению покоя. Второй участок, на котором сила трения не зависит от внешней силы, соответствует трению скольжения.

Рис. 10. График зависимости силы трения от приложенной силы

Коэффициент трения скольжения приблизительно равен коэффициенту трения покоя. Обычно коэффициент трения скольжения меньше единицы. Это означает, что сила трения скольжения по величине меньше силы нормального давления.

Коэффициент трения скольжения является характеристикой двух трущихся друг о друга тел, он зависит от того, из каких материалов изготовлены тела и насколько хорошо обработаны поверхности (гладкие или шероховатые).

Происхождение сил трения покоя и скольжения обуславливается тем, что любая поверхность на микроскопическом уровне не является плоской, на любой поверхности всегда присутствуют микроскопические неоднородности (рис. 11).

Рис. 11. Поверхности тел на микроскопическом уровне

Когда два соприкасающихся тела подвергаются попытке перемещения относительно друг друга, эти неоднородности зацепляются и препятствуют этому перемещению. При небольшой величине приложенной силы этого зацепления достаточно для того, чтобы не позволить телам смещаться, так возникает трение покоя. Когда внешняя сила превосходит максимальное трение покоя, то зацепления шероховатостей недостаточно для удержания тел, и они начинают смещаться относительно друг друга, при этом между телами действует сила трения скольжения.

Данный вид трения возникает при перекатывании тел друг по другу или при качении одного тела по поверхности другого. Трение качения, как и трение скольжения, сообщает телу отрицательное ускорение.

Возникновение силы трения качения обусловлено деформацией катящегося тела и опорной поверхностью. Так, колесо, расположенное на горизонтальной поверхности, деформирует последнюю. При движении колеса деформации не успевают восстановиться, поэтому колесу приходится как бы все время взбираться на небольшую горку, из-за чего появляется момент сил, тормозящий качение.

Рис. 12. Возникновение силы трения качения

Величина силы трения качения, как правило, во много раз меньше силы трения скольжения при прочих равных условиях. Благодаря этому качение является распространенным видом движения в технике.

При движении твердого тела в жидкости или газе на него действует со стороны среды сила сопротивления. Эта сила направлена против скорости тела и тормозит движение (рис. 13).

Главная особенность силы сопротивления заключается в том, что она возникает только при наличии относительного движения тела и окружающей его среды. То есть силы трения покоя в жидкостях и газах не существует. Это приводит к тому, что человек может сдвинуть даже тяжелую баржу, находящуюся на воде.

Рис. 13. Сила сопротивления, действующая на тело при движении в жидкости или газе

Модуль силы сопротивления зависит:

От размеров тела и его геометрической формы (рис. 14);

Состояния поверхности тела (рис. 15);

Свойства жидкости или газа (рис. 16);

Относительной скорости тела и окружающей его среды (рис. 17).

Рис. 14. Зависимости модуля силы сопротивления от геометрической формы

Рис. 15. Зависимости модуля силы сопротивления от состояния поверхности тела

Рис. 16. Зависимости модуля силы сопротивления от свойства жидкости или газа

Рис. 17. Зависимости модуля силы сопротивления от относительной скорости тела и окружающей его среды

На рисунке 18 показан график зависимости силы сопротивления от скорости тела. При относительной скорости, равной нулю, сила сопротивления не действует на тело. С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем темп роста увеличивается.

Рис. 18. График зависимости силы сопротивления от скорости тела

При низких значениях относительной скорости сила сопротивления прямо пропорциональна величине этой скорости:

где – величина относительной скорости; – коэффициент сопротивления, который зависит от рода вязкой среды, формы и размеров тела.

Если относительная скорость имеет достаточно большое значение, то сила сопротивления становится пропорциональной квадрату этой скорости.

где – величина относительной скорости; – коэффициент сопротивления .

Выбор формулы для каждого конкретного случая определяется опытным путем.

Тело массой 600 г равномерно движется по горизонтальной поверхности (рис. 19). При этом к нему приложена сила, величина которой равна 1,2 Н. Определить величину коэффициента трения между телом и поверхностью.

Тре́ние каче́ния - сопротивление движению, возникающее при перекатывании тел друг по другу т.е. сопротивление качению одного тела (катка) по поверхности другого. Причина трения качения - деформация катка и опорной поверхности. Проявляется, например, между элементами подшипников качения , между автомобильной шиной колеса автомобиля и дорожным полотном. В большинстве случаев величина трения качения гораздо меньше величины трения скольжения при прочих равных условиях, и потому качение является распространенным видом движения в технике. Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

Энциклопедичный YouTube

  • 1 / 5

    Пусть на тело вращения, располагающееся на опоре, действуют

    Если векторная сумма этих сил равна нулю

    N → + P → + R → p = 0 , {\displaystyle {\vec {N}}+{\vec {P}}+{\vec {R}}_{p}=0,}

    то ось симметрии тела движется равномерно и прямолинейно или остаётся неподвижной (см. рис. 1) . Вектор F → t = − P → {\displaystyle {\vec {F}}_{t}=-{\vec {P}}} определяет силу трения качения, противодействующую движению. Это означает, что прижимающая сила уравновешивается вертикальной составляющей реакции опоры, а внешняя сила уравновешивается горизонтальной составляющей реакции опоры.

    Равномерное качение означает также, что сумма моментов сил относительно произвольной точки равна нулю. Из равновесия относительно оси вращения моментов сил, изображённых на рис. 2 и 3 , следует:

    F t ⋅ R = N ⋅ f , {\displaystyle F_{t}\cdot R=N\cdot f,} F t = f R ⋅ N , {\displaystyle F_{t}={\frac {f}{R}}\cdot N,}

    Эта зависимость подтверждается экспериментально. Для малой скорости качения сила трения качения не зависит от величины этой скорости. Когда скорость качения достигает значений, сопоставимых со значениями скорости деформации в материале опоры, трение качения резко возрастает и даже может превысить трение скольжения при аналогичных условиях.

    Момент сил трения качения

    Определим для подвижного цилиндра момент, тормозящий вращательное движение тела. Рассматривая данный момент относительно оси вращающегося колеса (например, колеса автомобиля), находим, что он равен произведению тормозного усилия на оси на радиус колеса. Относительно точки контакта движущегося тела с землей момент будет равен произведению внешней силы, уравновешивающей силу трения, на радиус колеса (рис. 2) :

    M t = F t ⋅ R = P ⋅ R {\displaystyle M_{t}=F_{t}\cdot R=P\cdot R} .

    С другой стороны, момент трения равен моменту прижимающей силы N → {\displaystyle {\vec {N}}} на плечо, длина которого равна коэффициенту трения качения f :

    M t = f ⋅ N , {\displaystyle M_{t}=f\cdot N,}

    Коэффициент трения качения

    Из выписанного выше уравнения следует, что коэффициент трения качения может быть определен как отношение момента трения качения M t {\displaystyle M_{t}} к прижимной силе N :

    f = M t N . {\displaystyle f={\frac {M_{t}}{N}}.}

    Графическая интерпретация коэффициента трения качения f дана на рисунке 3 и 4 .

    Коэффициент трения качения имеет следующие физические интерпретации:

    • Если тело находится в покое и внешняя сила отсутствует, то реакция опоры лежит на той же линии, что и прижимающая сила. Когда тело катится, то из условия равновесия следует, что нормальная составляющая реакции опоры параллельна и противонаправлена прижимающей силе, но не лежит с ней на одной линии. Коэффициент трения качения равен расстоянию между прямыми, вдоль которых действуют прижимающая сила и нормальная составляющая реакции опоры (рис. 4 ).

    Ориентировочные значения коэффициента трения для различных пар качения

    Катящееся тело Подстилающая поверхность Коэффициент трения в мм
    мягкое дерево мягкое дерево 1,5
    мягкое дерево сталь 0,8
    твердое дерево твердое дерево 0,8
    эбонит бетон 10-20
    эбонит сталь 7,7
    резина бетон 15-35
    закалённая сталь закалённая сталь 0,01
    полимер сталь 2
    сталь асфальт 6
    сталь тротуарная плитка 1,5
    сталь сталь 0,5
    железо мягкое дерево 5,6
    железо гранит 2,1
    железо железо 0,51
    чугунное литьё чугунное литьё 0,8

    Трение качения возникает при относительном перекатывании эле­ментов кинематических пар звеньев. В этом случае имеет место внутреннее и внешнее трение со всеми сопровождающими их явлениями. Существует несколько гипотез, объясняющих природу тре­ния качения. Рассмотрим одну из них.

    На горизонтальную плоскость поместим цилиндр, находящийся под действием вертикальной силы Q (рис. 9.9, а ). Цилиндр представляет собой упругое тело, поэ­тому в месте контакта с плоскостью он будет упруго деформировать­ся. Эпюра напряжений смятия σ представляет собой симметричную относительно оси цилиндра кри­вую. Равнодействующая R n нап­ряжений σ равна Q и противопо­ложно ей направлена, а линия ее действия будет совпадать с осью цилиндра.

    Рис. 9.9. Природа трения качения

    К цилиндру приложим пару сил М (рис. 9.9, б ) так, чтобы он катился по плоскости с постоянной скоростью. Сопротивление перека­тыванию преодолевается моментом М, то есть трение качения в данном случае определяется моментом пары сил. Экспериментальным путем установлено, что момент трения каче­ния пропорционален нагрузке

    Коэффициент пропорциональности k – коэффициент тре­ния качения, имеющий размерность длины.

    Физический смысл коэффициента трения качения можно устано­вить следующим образом. Если какое-либо упругое реальное тело постепенно нагружать, то зависимость напряжения от деформации будет определяться кривой 1, показанной на рис. 9.10, если же разгружать, - кривой 2.

    В про­цессе перекатывания цилиндра (см. рис. 9.9,б) по горизонталь­ной плоскости его участки, рас­полагающиеся по направлению движения относительно вертикаль­ной оси, будут нагружаться, а располагающиеся с противополож­ной стороны - разгружаться. Поэ­тому эпюра напряжений будет представлять собой уже несимметричную кривую. Это явление носит наз­вание упругого гистерези­са.

    Следовательно, для одной и той же деформации ∆l напряже­ние при нагрузке σ н больше нап­ряжения при разгрузке σ p .

    Равнодействующая R n = Q напряжений будет смещена на величину k в сторону дви­жения. Из условия равновесия сил, приложенных к цилиндру,

    M = kQ, т. е. в данной гипотезе коэффициент трения качения k выступает как плечо, на которое смещена равнодействующая напря­жений смятия цилиндра при движении.

    Определим величину силы Р (рис. 9.11), под действием которой цилиндр,

    нагруженный силой Q , будет катиться с постоянной ско­ростью по горизонталь

    ной плоскости. С приложением сил Q и Р возникают силы R n - нормальная реакция плоскости - и F - сила трения скольжения.

    Из условия равновесия сил R n = Q, F = P и ∑M A = Ph – R n k = 0.

    Откуда Качение цилиндра будет происходить при условии, что значение силы Р будет не больше, чем максимальное значение силы F = fQ. В противном случае цилиндр будет скользить. Следовательно, усло­вие отсутствия скольжения будет при Pили откуда имеем .

error: