Атомный номер водорода в таблице менделеева. VII

Водород (лат. hydrogenium), Н, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,00797. При обычных условиях В. - газ; не имеет цвета, запаха и вкуса.

Историческая справка. В трудах химиков 16 и 17 вв. неоднократно упоминалось о выделении горючего газа при действии кислот на металлы. В 1766 Г. Кавендиш собрал и исследовал выделяющийся газ, назвав его «горючий воздух». Будучи сторонником теории флогистона , Кавендиш полагал, что этот газ и есть чистый флогистон. В 1783 А. Лавуазье путём анализа и синтеза воды доказал сложность её состава, а в 1787 определил «горючий воздух» как новый химический элемент (В.) и дал ему современное название hydrog e ne (от греч. h y d o r - вода и genn a o - рождаю), что означает «рождающий воду»; этот корень употребляется в названиях соединений В. и процессов с его участием (например, гидриды, гидрогенизация). Современное русское наименование «В.» было предложено М. Ф. Соловьёвым в 1824.

Распространённость в природе . В. широко распространён в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. В. входит в состав самого распространённого вещества на Земле - воды (11,19% В. по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (т. е. в состав белков, нуклеиновых кислот, жиров, углеводов и др.). В свободном состоянии В. встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного В. (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве В. в виде потока протонов образует внутренний («протонный») радиационный пояс Земли . В космосе В. является самым распространённым элементом. В виде плазмы он составляет около половины массы Солнца и большинства звёзд, основную часть газов межзвёздной среды и газовых туманностей. В. присутствует в атмосфере ряда планет и в кометах в виде свободного h 2 , метана ch 4 , аммиака nh 3 , воды h 2 o, радикалов типа ch, nh, oh, sih, ph и т.д. В виде потока протонов В. входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула. Обыкновенный В. состоит из смеси 2 устойчивых изотопов: лёгкого В., или протия (1 h), и тяжёлого В., или дейтерия (2 h, или d). В природных соединениях В. на 1 атом 2 h приходится в среднем 6800 атомов 1 h. Искусственно получен радиоактивный изотоп - сверхтяжёлый В., или тритий (3 h, или Т), с мягким?-излучением и периодом полураспада t 1/2 = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4 · 10 -15 % от общего числа атомов В.). Получен крайне неустойчивый изотоп 4 h. Массовые числа изотопов 1 h, 2 h, 3 h и 4 h, соответственно 1,2, 3 и 4, указывают на то, что ядро атома протия содержит только 1 протон, дейтерия - 1 протон и 1 нейтрон, трития - 1 протон и 2 нейтрона, 4 h - 1 протон и 3 нейтрона. Большое различие масс изотопов В. обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом В. имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв . Нейтральный атом В. может присоединять и второй электрон, образуя отрицательный ион Н - ; при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв . Квантовая механика позволяет рассчитать все возможные энергетические уровни атома В., а следовательно, дать полную интерпретацию его атомного спектра . Атом В. используется как модельный в квантовомеханических расчётах энергетических уровней других, более сложных атомов. Молекула В. h 2 состоит из двух атомов, соединённых ковалентной химической связью. Энергия диссоциации (т. е. распада на атомы) составляет 4,776 эв (1 эв = 1,60210 · 10 -19 дж ). Межатомное расстояние при равновесном положении ядер равно 0,7414 · a . При высоких температурах молекулярный В. диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный В. образуется также в различных химических реакциях (например, действием zn на соляную кислоту). Однако существование В. в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы h 2 .

Физические и химические свойства . В. - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм . В. кипит (сжижается) и плавится (затвердевает) соответственно при -252,6°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура В. очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм ), критическая плотность 0,0312 г/см 3 . Из всех газов В. обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/ (м · К ), т. е. 4,16 · 0 -4 кал/ (с · см · °С ). Удельная теплоёмкость В. при 0°С и 1 атм С р 14,208 · 10 3 дж/ (кг · К ), т. е. 3,394 кал/ (г · °С ). В. мало растворим в воде (0,0182 мл/г при 20°С и 1 атм ), но хорошо - во многих металлах (ni, pt, pd и др.), особенно в палладии (850 объёмов на 1 объём pd). С растворимостью В. в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия В. с углеродом (так называемая декарбонизация). Жидкий В. очень лёгок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при - 253°С 13,8 спуаз ).

В большинстве соединений В. проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий 1 гр. системы Менделеева. Однако в гидридах металлов ион В. заряжен отрицательно (степень окисления -1), т. е. гидрид na + h - построен подобно хлориду na + cl - . Этот и некоторые другие факты (близость физических свойств В. и галогенов, способность галогенов замещать В. в органических соединениях) дают основание относить В. также и к vii группе периодической системы. При обычных условиях молекулярный В. сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный В. обладает повышенной химической активностью по сравнению с молекулярным. С кислородом В. образует воду: h 2 + 1 / 2 o 2 = h 2 o с выделением 285,937 · 10 3 дж/моль , т. е. 68,3174 ккал/моль тепла (при 25°С и 1 атм ). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объёму) от 4 до 94% h 2 , а водородо-воздушной смеси - от 4 до 74% h 2 (смесь 2 объёмов h 2 и 1 объёма О 2 называется гремучим газом ). В. используется для восстановления многих металлов, так как отнимает кислород у их окислов:

cuo +Н 2 = cu + h 2 o,

fe 3 o 4 + 4h 2 = 3fe + 4h 2 o, и т.д.

С галогенами В. образует галогеноводороды, например:

h 2 + cl 2 = 2hcl.

При этом с фтором В. взрывается (даже в темноте и при -252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом В. взаимодействует с образованием аммиака: 3h 2 + n 2 = 2nh 3 лишь на катализаторе и при повышенных температурах и давлениях. При нагревании В. энергично реагирует с серой: h 2 + s = h 2 s (сероводород), значительно труднее с селеном и теллуром. С чистым углеродом В. может реагировать без катализатора только при высоких температурах: 2h 2 + С (аморфный) = ch 4 (метан). В. непосредственно реагирует с некоторыми металлами (щелочными, щёлочноземельными и др.), образуя гидриды: h 2 + 2li = 2lih. Важное практическое значение имеют реакции В. с окисью углерода, при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например hcho, ch 3 oh и др. Ненасыщенные углеводороды реагируют с В., переходя в насыщенные, например:

c n h 2 n + h 2 = c n h 2 n +2.

Роль В. и его соединений в химии исключительно велика. В. обусловливает кислотные свойства так называемых протонных кислот. В. склонен образовывать с некоторыми элементами так называемую водородную связь , оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

Получение . Основные виды сырья для промышленного получения В. - газы природные горючие , коксовый газ (см. Коксохимия ) и газы нефтепереработки , а также продукты газификации твёрдых и жидких топлив (главным образом угля). В. получают также из воды электролизом (в местах с дешёвой электроэнергией). Важнейшими способами производства В. из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия): ch 4 + h 2 o = co + 3h 2 , и неполное окисление углеводородов кислородом: ch 4 + 1 / 2 o 2 = co + 2h 2 . Образующаяся окись углерода также подвергается конверсии: co + h 2 o = co 2 + h 2 . В., добываемый из природного газа, самый дешёвый. Очень распространён способ производства В. из водяного и паровоздушного газов, получаемых газификацией угля. Процесс основан на конверсии окиси углерода. Водяной газ содержит до 50% h 2 и 40% co; в паровоздушном газе, кроме h 2 и co, имеется значительное количество n 2 , который используется вместе с получаемым В. для синтеза nh 3 . Из коксового газа и газов нефтепереработки В. выделяют путём удаления остальных компонентов газовой смеси, сжижаемых более легко, чем В., при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор koh или naoh (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях В. получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской В. в баллонах.

Применение . В промышленном масштабе В. стали получать в конце 18 в. для наполнения воздушных шаров. В настоящее время В. широко применяют в химической промышленности, главным образом для производства аммиака . Крупным потребителем В. является также производство метилового и других спиртов, синтетического бензина (синтина) и других продуктов, получаемых синтезом из В. и окиси углерода. В. применяют для гидрогенизации твёрдого и тяжёлого жидкого топлив, жиров и др., для синтеза hcl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы В. - дейтерий и тритий.

Лит.: Некрасов Б. В., Курс общей химии, 14 изд., М., 1962; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Егоров А. П., Шерешевский Д. И., Шманенков И. В., Общая химическая технология неорганических веществ, 4 изд., М., 1964; Общая химическая технология. Под ред. С. И. Вольфковича, т. 1, М., 1952; Лебедев В. В., Водород, его получение и использование, М., 1958; Налбандян А. Б., Воеводский В. В., Механизм окисления и горения водорода, М. - Л., 1949; Краткая химическая энциклопедия, т. 1, М., 1961, с. 619-24.

Водород - самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна - Н2. При нормальных условиях - это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9·106 Дж/кг, малорастворим в воде - 18,8 мл/л.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.

Твёрдый водород, температура плавления −259,2 °C, плотность 0,0807 г/см³ (при −262 °C) - снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм. При высоком давлении водород переходит в металлическое состояние.

Молекулярный водород существует в двух спиновых формах (модификациях) - в виде орто- и параводорода. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) - противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвёздной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

1. Ядро висмунта испытывает бета распад, при этом образуется элемент Х. Этот элемент можно обозначить как... 2. Какой порядковый номер в

таблице менделеева имеет элемент, который образуется в результате бета распада элемента с порядковым номером Z?

3. В результате альфа распада изменятеся....

В результете бета распада изменятеся....

Известно, осколки ядра урана представляют собой ядра атомов разных химических элементов из середины таблицы Д. И. Менделеева. Например, одна из

возможных реакций может быть записана в виде: 92U + 0n1 56Ва + X + 2 * 0n Пользуясь законом сохранения заряда и таблицей менделеева определите что это за элемент. решение пожалуйста:)

1.С какой силой притягиваются два корабля массами по 10000т, находящихся на расстоянии 1км друг от друга?

А. 6,67 мкН; Б. 6,67мН; В. 6,67Н; Г. 6,67МН.

2.В соревнованиях по перетягиванию каната участвуют четверо мальчиков. Влево тянут канат двое мальчиков с силами 530Н и 540Н соответственно, а вправо – двое мальчиков с силами 560Н и 520Н соответственно. В какую сторону и какой результирующей силой перетянется канат?

А. Вправо, силой 10Н; Б. Влево, силой 10Н; В. Влево, силой 20Н; Г. Победит дружба.

3. Порядковый номер алюминия в таблице Менделеева 13, а массовое число равно 27. Сколько электронов вращаются вокруг ядра атома алюминия?

А. 27; Б. 13; В. 40; Г. 14.

4.Двигаясь с начальной скоростью 54км/ч, автомобиль за 10с прошел путь 155м. С каким ускорением двигался автомобиль и какую скорость он приобрел в конце пути?

5.Какова сила тока в стальном проводнике длиной 12м и сечением 4мм2, на который подано напряжение 72мВ? (удельное сопротивление стали 0,12 Ом мм2/м)

1)отметьте число электронов,которое может содержаться на s-подуровне электронной оболочки атомов А)2 В)6 Б)3 Г)8 2)Отметьте форму р-орбиталей: A)шар

В)обьемная восьмерка Б)еллипс Г)тороид 3) Отметье название семейства простых вешеств,которое образуют элементы главной подгруппы седьмой группы Периодической системы А)инертные газы Б)Щелочные металлы В)Галогенты Г)щелочноземельные металлы 4)Подчеркните одной чертой символы металлических элементов,которые входят в состав главных подгрупп,а двумя - металлические элементы побочных подгрупп:Na,S,Cu,Br,Pb,Ba,Fe,Si,Au. 5)Соедините линиями названия химических элементов и число электронов на внешнем электронном уровне их атомов: Хлор 1 Силиций 7 Цезий 4 6)определите число протонов,электронов и нейтронов в атомах,Хакактеристика 7)Запишите названия химических эдементов,которым соответсвуют электронные конфигурации: (ПРОПУСКАЕМ) 8)Изобразите распределение электронов в электронной оболочке атомов карбона и сульфура. 9) Составьте уравнения реакций взаимодействия высшего оксида сульфура с данными веществами А) ___PbO + _________ --> _____________ Б) ____KOH + __________ ---> ___________ В) _____Mg(OH)2 + _______ --> ___________ Г) _____Zno + ___________ --> ______________ 10)Порядковые номера элементов А и Б Соответсвтвенно N и N +2,Если химический элемент А - самый легкий галоген,то каким химическим элементов будет Б? Определите его порядковый номер в периодической системе. 11)Простое вещестров массой 2,75 Г,которое образовано элементом с электронной конфигурацией 1s22S22p1 (После 1s и 2s двойки идут маленькие,после p еденица маленькая) прореагировало с простыми веществом,образованным элементом,в ядраъ атома которого на три протона больше,чем у вышеупомянутого элемента,вычислите массу продукта реакции. ЭТО ВСЁ буду весьма благодарен если правельно поможете с заданиями.

3. Почему водород, в отличие от всех других элементов, записывают в Периодической таблице Д.И. Менделеева дважды? Докажите правомочность двойственного положения водорода в Периодической системе, сравнив строение и свойства его атома, простого вещества и соединений с соответствующими формами существования других элементов - щелочных металлов и галогенов.

Водород можно записать в первую группу, т.к. его атом имеет на внешней оболочке 1 электрон, как и щелочные металлы, но также ему не хватает до завершения внешнего электронного слоя одного электрона, как и галогенам, поэтому его можно записать в седьмую группу. Водород при обычных условиях образует как и галогены двухатомную молекулу простого вещества с одинарной связью - газа, как фтор или хлор. Водород, как и галогены, соединяется с металлами, образуя нелетучие гидриды. Однако как и щелочные металлы водород может проявлять валентность только равную I, а галогены, как правило, образуют множество соединений, проявляя различную валентность.

Заряд ядра атома водорода равен 1 и поэтому в Периодической системе он стоит под номером 1. Водород расположен в первом периоде, где находятся всего два химических элемента H и He. Емкость первого электронного слоя равна 2 и поэтому у атомов гелия имеется завершенная электронная оболочка, а He является аналогом инертных газов (Ne, Ar, Kr, Xe и Rn). У атома водорода один электрон и его электронная конфигурация 1s1. В реакциях окисления или восстановления атом водорода может либо присоединять, либо отдавать один электрон. Какие же (по группам Периодической системы) одновалентные аналоги могут быть у водорода? В первую очередь - это щелочные металлы, у атомов которых на внешнем электронном слое также имеется 1 s электрон. Кроме того, металлические свойства химических элементов уменьшаются при переходе в Периодической системе по группам снизу вверх, а значит увеличиваются неметаллические свойства. И, если мы отнесем водород к первой группе, у него могут появиться слабые неметаллические свойства? Да его считают самым слабым неметаллом. Так что помещение водорода в первую группу не противоречит логике Периодической системы.

У атома водорода для завершения электронной оболочки не хватает всего одного электрона, поэтому при взаимодействии с активными металлами (щелочными и щелочноземельными) атом водорода стремится их внешний валентный электрон присоединить себе и тем самым он ведет себя подобно атомам галогенов. А получаемые водородные соединения (гидриды металлов - MeH) подобны соединениям галогенов со щелочными и щелочноземельными металлам. Значит они являются солями? По внешнему виду, по физическим свойствам, по способности проводить электрический ток в расплавленном состоянии гидриды металлов напоминают хлориды соответствующих металлов. При переходе в группе неметаллические свойства химических элементов снизу вверх возрастают. Тогда водород должен бы быть самым активным неметаллом. Это не так. Самый активный неметалл это фтор. Поскольку свойства водорода в чем-то напоминает свойства галогенов, то условно (в скобках) его можно было бы поместить в 7-ую группу над фтором.

Есть учебники, в которых клетку в первом периоде, предназначенную для водорода - делают размером в семь клеток - от Li до F - и считают водород аналогом сразу всех семи элементов 2-го периода. С этим вряд ли можно согласиться, так как водород во всех своих соединениях является одновалентным, а для элементов 2 - 6 групп валентность равная 1 не характерна.

Мы специально излагаем этот материал не в категоричной, как обычно написаны учебники для школьников, а в дискуссионной форме. Химия как наука все еще находится в стадии становления и развития. И не нужно бояться "противоречий" в разных учебных пособиях по химии. Нужно попробовать понять точку зрения автора, понять его доводы и стремиться формировать собственное обоснованное мнение.

error: