Карбонильная группа. Альдегиды и кетоны

Альдегиды и кетоны относятся к карбонильным органическим соединениям.

Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >С=О (карбонил или оксогруппа).

Общая формула карбонильных соединений:

В зависимости от типа заместителя Х эти соединения подразделяют на:

 альдегиды (Х = Н);

 кетоны (Х = R, R");

 карбоновые кислоты (Х = ОН) и их производные (Х = ОR, NH 2 , NHR, Hal и т.д.).

Альдегиды и кетоны - характеризуются присутствием в молекулекарбонильной группы, или радикала карбонила, >С=О. В альдегидахатомуглеродаэтого радикала связан не менее чем с одниматомомводорода, так что получается одновалентный радикал называемый такжеальдегидной группой. В кетонахкарбонильная группа связана с двумя углеводородными радикалами и называется такжекетогруппой или оксо-группой.

Гомологический рядальдегидови их номенклатура

Альдегиды – органические соединения, в молекулах которых атом углерода карбонильной группы (карбонильный углерод) связан с атомом водорода.

Общая формула: R–CН=O или

Функциональная группа –СН=О называется альдегидной.

Альдегидыможно также рассматривать каквещества, происшедшие от замещения в парафиновыхуглеводородахатомаводородана альдегидную группу, т. е. как однозамещенныепроизводные углеводородовгомологического рядаметана. Следовательно, здесьгомологияиизомерияте же, что и для других однозамещенных производныхпредельных углеводородов.

Названия альдегидовпроизводятся от тривиальных названийкислотс тем же числоматомовуглеродавмолекуле. Так,альдегидСН 3 -СНО называется уксусным альдегидом или ацетальдегидом, СН 3 СН 2 -СНО - пропионовым альдегидом, СН 3 СН 2 СН 2 -СНО - нормальным масляным альдегидом или бутиральдегидом, (СН 3) 2 СН-СНО - изомасляным альдегидом, альдегидыС 4 Н 9 -СНО - валериановыми альдегидами и т. д.

По женевской номенклатуре, названияальдегидовпроизводятся от названийуглеводородов, имеющих то же число углеродныхатомов, с присоединением кокончанию ан слога аль , например метаналь Н-СНО, этаналь СН 3 -СНО, 2-метилпропаналь СН 3 СН(СН 3)-СНО и т. д.

Гомологический рядкетонов и их номенклатура

Кетоны – органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами.

Общие формулы: R 2 C=O, R–CO–R" или

Простейший из кетонов имеет строение СН 3 -СО-СН 3 и называется диметилкетоном или ацетоном. От ацетонаможно произвестигомологический рядпоследовательным замещениематомовводородана метил. Таким образом, следующий гомолог ацетона- метилэтилкетон имеет строение СН 3 -СО-СН 2 -СН 3 .

Названия кетонов, так же как и названия альдегидов, поженевской номенклатуре, производятся от названийуглеводородовс тем же числоматомовуглерода, с присоединением кокончанию ан слога он и прибавлением цифры, обозначающей место атомауглеродакарбонильной группы, считая от начала нормальной углеродной цепи;ацетон, таким образом, носит названиепропанон, диэтилкетон - пентанон- 3, метилизопропилкетон - 2-метилбутанон и т. д

Альдегидыикетоныс одинаковым числоматомовуглеродавмолекулеизомерны друг другу. Общая формула длягомологических рядовпредельныхальдегидови кетонов: С n Н 2 n О.

Альдегидыикетонысодержат вмолекулеодну и ту же карбонильную группу, обусловливающую много общих типических свойств. Поэтому имеется очень много общего и вспособах получения и вхимических реакцияхобоих этих родственных классоввеществ. Присутствие вальдегидахатомаводорода, связанного с карбонильной группой, обусловливает ряд отличий этого классавеществот кетонов.

Примеры:

Химические свойства альдегидов и кетонов определяются особенностями карбонильной группы >C=O, обладающей полярностью – электронная плотность между атомами С и О распределена неравномерно, сдвинута к более электроотрицательному атому О. В результате карбонильная группа приобретает повышенную реакционную способность, что проявляется в разнообразных реакциях присоединения по двойной связи. Во всех случаях кетоны менее реакционноспособны, чем альдегиды, в частности, из-за пространственных затруднений, создаваемых двумя органическими группами R, наиболее легко участвует в реакциях формальдегид Н 2 С=О.

1. Присоединение по двойной связи С=О. При взаимодействии со спиртами альдегиды образуют полуацетали – соединения, содержащие одновременно алкокси- и гидрокси-группу у одного атома углерода: >C(OH)OR. Полуацетали могут далее реагировать с еще одной молекулой спирта, образуя полные ацетали – соединения, где у одного атома углерода находятся одновременно две RО-группы: >C(OR) 2 . Реакцию катализируют кислоты и основания. В случае кетонов присоединение спиртов к двойной связи в С=О затруднено.

Сходным образом альдегиды и кетоны реагируют с синильной кислотой HCN, образуя гидроксинитрилы – соединения, содержащие у одного атома углерода ОН- и CN-группу: >C(OH)CN. Реакция примечательна тем, что позволяет увеличивать углеродную цепь (возникает новая связь С-С).

Точно так же (раскрывая двойную связь С=О) аммиак и амины реагируют с альдегидами и кетонами, продукты присоединения неустойчивы и конденсируются с выделением воды и образованием двойной связи C=N. В случае аммиака получаются имины, а из аминов образуются так называемые основания Шиффа – соединения, содержащие фрагмент >C=NR. Продукт взаимодействия формальдегида с аммиаком несколько иной – это результат циклизации трех промежуточных молекул, в результате получается каркасное соединение гексаметилентетрамин, используемое в медицине как препарат уротропин.

2. Реакции конденсации. Для альдегидов и кетонов возможна конденсация, проходящая между двумя молекулами одного и того же соединения. При такой конденсации альдегидов двойная связь одной из молекул раскрывается, образуется соединение, содержащее одновременно альдегидную и ОН-группу, называемое альдолем (альдегидоспирт). Протекающую конденсацию называют, соответственно, альдольной, эту реакцию катализируют основания. Полученный альдоль может далее конденсироваться с образованием двойной связи С=С и выделением конденсационной воды. В итоге получается ненасыщенный альдегид. Такую конденсацию называют кротоновой по названию первого соединения в ряду ненасыщенных альдегидов. Кетоны также способны участвовать в альдольной конденсации, а вторая стадия – кротоновая конденсация, для них затруднена. В альдольной конденсации могут совместно участвовать молекулы различных альдегидов, а также одновременно альдегид и кетон, во всех случаях происходит удлинение углеродной цепи. Получившийся на последней стадии (рис. 4А) кротоновый альдегид, обладая всеми свойствами альдегидов, может далее участвовать в альдольной и кротоновой конденсации при взаимодействии с очередной порцией ацетальдегида, из которого он и был получен. Таким способом можно удлинять углеводородную цепь, получая соединения, в которых чередуются простые и двойные связи: –СН=СН–СН=СН–.

Конденсация альдегидов и кетонов с фенолами идет с удалением карбонильного атома О (в виде воды), а метиленовая группа СН 2 или замещенная метиленовая группа (СНR либо СR2) встраивается между двумя молекулами фенола. Наиболее широко эту реакцию применяют для получения фенолоформальдегидных смол.

3. Полимеризация карбонильных соединений протекает с раскрытием двойной связи С=О и свойственна, в основном, альдегидам. При упаривании в вакууме водных растворов формальдегида образуется смесь циклических соединений (в основном, триоксиметилен) и линейных продуктов с незначительной длиной цепи n = 8–12 (параформ). Полимеризацией циклического продукта получают полиформальдегид – полимер с высокой прочностью и хорошими электроизоляционными свойствами, используемый как конструкционный материал в машино- и приборостроении.

4. Восстановление и окисление. Альдегиды и кетоны представляют собой как бы промежуточные соединения между спиртами и карбоновыми кислотами: восстановление приводит к спиртам, а окисление –- к карбоновым кислотам. При действии Н 2 (в присутствии катализатора Pt или Ni) либо других восстанавливающих реагентов, например, LiAlH 4 , альдегиды восстанавливаются, образуя первичные спирты, а кетоны – вторичные спирты.

Окисление альдегидов до карбоновых кислот проходит достаточно легко в присутствии О 2 или при действии слабых окислителей, таких как аммиачный раствор гидроксида серебра. Эта эффектная реакция сопровождается образованием серебряного зеркала на внутренней поверхности реакционного прибора (чаще, обычной пробирки), ее используют для качественного обнаружения альдегидной группы. В отличие от альдегидов, кетоны более устойчивы к окислению, при их нагревании в присутствии сильных окислителей, например, КМnО 4 , образуются смеси карбоновых кислот, имеющих укороченную (в сравнении с исходным кетоном) углеводородную цепь.

Дополнительным подтверждением того, что альдегиды занимают промежуточное положение между спиртами и кислотами, служит реакция, в результате которой из двух молекул альдегида получаются спирт и карбоновая кислота т.е. одна молекула альдегида окисляется, а другая восстанавливается. В некоторых случаях два полученных соединения – спирт и карбоновая кислота – далее реагируют между собой, образуя сложный эфир.

Получение альдегидов и кетонов.

Наиболее универсальный способ – окисление спиртов, при этом из первичных спиртов образуются альдегиды, а из вторичных – кетоны. Это реакции, обратные реакциям. Реакция поворачивает «вспять», если изменен действующий реагент (окислитель вместо восстановителя) и катализатор, при окислении спиртов эффективен медный катализатор.

В промышленности ацетальдегид получают окислением этилена, на промежуточной стадии образуется спирт, у которого ОН-группа «примыкает» к двойной связи (виниловый спирт), такие спирты неустойчивы и сразу изомеризуются в карбонильные соединения. Другой способ – каталитическая гидратация ацетилена, промежуточное соединение – виниловый спирт. Если вместо ацетилена взять метилацетилен, то получится ацетон. Промышленный способ получения ацетона – окислением кумола. Ароматические кетоны, например, ацетофенон, получают каталитическим присоединением ацетильной группы к ароматическому ядру.

Применение альдегидов и кетонов.

Формальдегид Н 2 С=О (его водный раствор называют формалином) используют как дубитель кожи и консервант биологических препаратов.

Ацетон (СН 3) 2 С=О – широко применяемый экстрагент и растворитель лаков и эмалей.

Ароматический кетон бензофенон (С 6 Н 5) 2 С=О с запахом герани, используется в парфюмерных композициях и для ароматизации мыла.

Некоторые из альдегидов были сначала найдены в составе эфирных масел растений, а позже искусственно синтезированы.

Алифатический альдегид СН 3 (СН 2) 7 С(Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия.

ВАНИЛИН

Бензальдегид С 6 Н 5 С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Бензофенон (С 6 Н 5) 2 С=О и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара, кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов. Бензофенон обладает приятным запахом герани, и потому его используют в парфюмерных композициях и для ароматизации мыла.

Способность альдегидов и кетоновучаствовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Источники: Несмеянов А.Н., Несмеянов Н.А. Начала органической химии .


Альдегиды
– органические вещества, молекулы которых содержат карбонильную группу С=O , соединенную с атомом водорода и углеводородным радикалом.
Общая формула альдегидов имеет вид:

В простейшем альдегиде – формальдегиде роль углеводородного радикала играет другой атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

Кетоны – органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой .
В простейшем кетоне – ацетоне – карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного радикала, связного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль. Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поэтому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов

В молекуле альдегида или кетона вследствие большей электороотрицательности атома кислорода по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электронной плотности π -связи к кислороду:

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства альдегидов и кетонов

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

1. Реакции восстановления .

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты. Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

Гидрирование альдегидов - реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

2. Реакции окисления . Альдегиды способны не только восстанавливаться, но и окисляться . При окислении альдегиды образуют карбоновые кислоты.

Окисление кислородом воздуха . Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

Окисление слабыми окислителями (аммиачный раствор оксида серебра).

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее тонкой ровной пленкой. Получается замечательное серебряное зеркало. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

3. Реакция полимеризации:

n СH 2 =O → (-CH 2 -O-) n параформ n=8-12

Получение альдегидов и кетонов

Применение альдегидов и кетонов

Формальдегид (метаналь, муравьиный альдегид) H 2 C=O:
а) для получение фенолформальдегидных смол;
б) получение мочевино-формальдегидных (карбамидных) смол;
в) полиоксиметиленовые полимеры;
г) синтез лекарственных средств (уротропин);
д) дезинфицирующее средство;
е) консервант биологических препаратов (благодаря способности свертывать белок).

Уксусный альдегид (этаналь, ацетальдегид) СН 3 СН=О:
а) производство уксусной кислоты;
б) органический синтез.

Ацетон СН 3 -СО-СН 3:
а) растворитель лаков, красок, ацетатов целлюлозы;
б) сырье для синтеза различных органических веществ.


Слово альдегид было придумано как сокращение латинского alcohol dehydrogenatus - дегидрированный спирт, самый популярный альдегид - формальдегид, из него делают смолы, синтезируют лекарства и как консервант. Формула альдегида - R-CHO, соединение, в котором карбонильная группа соединена с водородом и радикалом.

Слово кетон произошло от слова ацетон, младшего соединения из семейства кетонов. Кетоны используются как растворители, лекарства и для синтеза полимеров. Формула кетона - R-C(O)-R, соединение, в котором карбонильная группа соединена с двумя радикалами.

Структура и свойства карбонильной группы

Карбонильная группа основана на связи атома углерода и атома кислорода посредством α- и π-связей. Резонансная структура группы определяет высокую полярность соединения и электронное облако сдвинуто в сторону кислорода: C δ+ =O δ- . Введение электроотрицательных элементов в уменьшает полярность связи, повышая положительный заряд молекулы. Нуклеофильные заместители увеличивают отрицательный заряд кислорода.

Атом углерода в карбонильной группе является сильным электрофилом (присоединяет электроны), поэтому большинство реакций альдегидов и кетонов осуществляется нуклеофильными реактивами (основания Льюиса). Логично, атом кислорода является сильным нуклеофилом, и реакции с атомом кислорода возможны с применением электрофилов (кислот Льюиса).

Реакция карбонильной группы с основанием Льюиса
(R)(R)C δ+ =O δ- + B: → (R)(R)C(B)-O
Реакция карбонильной группы с кислотой Льюиса
(R)(R)C δ+ =O δ- + Y: → (R)(R)C-O-Y

В дополнение, неразделённые электроны кислорода наделяют его слабыми свойствами основания, поэтому те альдегиды и цетоны, которые не растворяются в воде, растворяются в концентрированной серной кислоте.

Физические свойства карбонильной группы

Высокая полярность связи C=O образует высокий дипольный момент, из-за чего носители карбоксильной группы имеют более высокую температуру кипения, по сравнению с углеводородами.

Неразделённые электроны в атоме кислорода образуют водородную связь с молекулами воды, поэтому, начиная с пяти атомов углерода в радикалах, альдегиды и кетоны плохо растворяются в воде или не растворяются вовсе.

Альдегиды и кетоны, имеющие до 12 атомов углерода - жидкости. Алифатические соединения с карбонильной группой имеют плотность примерно 0.8, поэтому плавают на поверхности воды, циклогексанон имеет плотность около единицы, ароматические альдегиды и кетоны имеют плотность чуть больше, чем плотность воды.

Реакции альдегидов и кетонов

Присоединение воды

В процессе реакции воды с альдегидами и кетонами образуются диолы (гликоли, двухатомные спирты). Реакция протекает с использованием катализатора - кислотой или основанием и является двусторонней:

RR-CO + H-OH ↔ R R\ C /OH -OH

Присоединение нуклеофильных углеродов

Важные нуклеофильные соединения, реагирующие с альдегидами и кетонами - металлорганические соеденинения (органические соединения, в молекулах которых существует связь атома металла с атомом/атомами углерода). Одни из представителей металлорганических соединений - реактивы Гриньяра (общая формула - R-Mg-X), в реакциях с альдегидами и кетонами образуют спирты:

RH-C=O + R-C - H 2 -Mg + -Cl - → RH-С-(O-MgCl)(CH 2 -R)
RH-С-(O-MgCl)(CH 2 -R) + H-OH → RH-C-CH 2 R + OH-Mg-Cl

Окисление альдегидов и кетонов

При окислении, альдегиды находятся на промежуточном этапе между спиртами и карбоновыми кислотами:

В присутствии водорода и кислорода:
R-CH 2 -OH ↔ R-C(=O)-H ↔ R-COOH

Альдегиды легко окисляются, что позволяет использовать более мягкие окислители, чем простой кислород. Ароматические альдегиды подвергаются окислению легче, чем алифатические. Проблема окисления альдегидов - в образовании побочных продуктов.

Кетоны окисляются с трудом, для окисления кетонов необходимо использовать сильные окислители и большое количество тепла. В результате окисления разрывается связь C-C и образовывается кислота (есть исключение):

В присутствии KMnO 4 , H и большого количества тепла :
CH 3 -C(=O)-CH 2 CH 3 → CH 3 -C(=O)-OH + CH 3 CH 2 -C(=O)-OH

Исключением является окисление диоксидом селена, SeO 2 , метил-группа, следующая за карбонильной, окисляется, преобразовываясь в другую карбонильную группу. Например, метилэтилкетон окисляется в диацетил:

Окисление метилэтилкетона в диацетил:
CH 3 CH 2 -C(=O)-CH 3 + SeO 2 → CH 3 -C(=O)-C(=O)-CH 3 + H 2 O + Se

Лёгкость, с которой окисляются альдегиды, позволяет легко отличить их от кетонов, для этого используются мягкие окислители, такие как: реактив Толленса (гидроксид диамминсеребра, Ag(NH 3) 2 OH), реактив Фелинга (алкалиновый раствор ионов меди Cu в Сегнетовой соли KNaC 4 H 6 O 6 ·4H 2 O) и раствор Бенедикта (ионы меди с цитратом и карбонатом натрия). Ароматические альдегиды реагируют с реактивом Толленса, но не реагируют с реактивами Бенедикта и Фелинга, что используется для определения количества алифатических и ароматных альдегидов.

Полимеризация альдегидов

Паральдегид

Ацетальдегид имеет температуру кипения 20°C, что затрудняет его хранение и применение. При обработке ацетальдегида кислотой при низкой температуре, ацетальдегид соединяется в цикличную тройную молекулу - паральдегид, с температурой кипения 120°C. Паральдегид при небольшом нагреве деполимеризуется, высвобождая три молекулы ацетальдегида.

Формальдегид

Для удобства транспортировки и хранения, формальдегид продаётся не в форме газа, а в виде формалина - водного раствора с содержанием 37-40% параформальдегида, OH(CH 2 O) n H, со средним значением n=30. Параформальдегид - белое аморфное вещество, твёрдое, получаемое медленным выпариванием формалина при низком давлении. Полимеризация происходит за счёт присоединения друг к другу молекул формальдегида:

CH 2 =O + H 2 O ↔
+ n → HO-(CH 2 O) n+1 -H

Полимер Дерлин (полиоксиметилен) является хорошим линейным пластиком с высокой молекулярной массой, дерлин обладает отличными характеристиками прочности и эластичности.

Общая формула кетонов: R 1 -CO-R 2 .


По номенклатуре ИЮПАК, названия кетонов образуют путем присоединения к названию соответствующих углеводородов суффикса "он" или к названию радикалов, связанных с кетогруппой С=О, слова "кетон"; при наличии старшей группы кетогруппу обозначают префиксом "оксо". Например, соединения СН 3 -СН 2 -СО-СН 2 -СН 2 -СН 3 называется 3-гексанон или этилпропилкетон, соединения СН 3 -СО-СН 2 -СН 2 -СООН - 4-оксопентановая кислота. Для некоторых кетонов приняты тривиальные названия.


Среди других карбонильных соединений наличие в кетонах именно двух атомов углерода, непосредственно связанных с карбонильной группой, отличает их от карбоновых кислот и их производных, а также альдегидов.


Особый класс циклических ненасыщенных дикетонов - хиноны.

Физические свойства

Простейшие кетоны являются бесцветными, летучими жидкостями, которые растворяются в воде. Кетоны обладают приятным запахом. Высшие кетоны - твердые, легкоплавкие вещества. Газообразных кетонов не бывает, так как уже простейший из них (ацетон) - жидкость. Многие химические свойства, характерные для альдегидов, проявляюся и у кетонов.

Кето-енольная таутомерия

Таутомерия - тип изомерии, при которой происходит быстрое самопроизвольное обратимое взаимопревращение структурных изомеров - таутомеров. Процесс взаимопревращения таутомеров называется таутомеризацией.


Кетоны, которые имеют по крайней мере один α-водородный атом, подвергаются кето-енольной таутомеризации.



Для оксосоединений, имеющих атом водорода в α-положении по отношннию к карбонильной группе, существует равновесие между таутомерными формами. Для подавляющего большинства оксосоединений это равновесие смещено в сторону кето-формы. Процесс перехода кето-формы в енольную называют енолизацией. На этом основана способность таких кетонов реагировать как С-или О-нуклеофилы. Концентрация енольной формы зависит от строения кетонов и составляет (в %): 0,0025 (ацетон), 2 (циклогексанон), 80 (ацетилацетон). Скорость енолизации возрастает в присутствии кислот и оснований.



Химические свойства

По степени окисленности кетоны, как и альдегиды, занимают промежуточное положение между спиртами и кислотами, что во многом определяет их химические свойства.
1. Кетоны восстанавливаются до вторичных спиртов гидридами металлов, например LiAlH 4 или NaBH 4 , водородом (кат. Ni, Pd), изопропанолом в присутствии алкоголята Аl (реакцияция Меервейна-Понндорфа-Верлея).


R 2 CO + 2H → R 2 CH(OH)



2. При восстановлении кетонов натрием или электрохимически (катодное восстановление) образуются пинаконы.


2R 2 CO + 2H → R 2 CH(OH)-CR 2 (OH)


3. При взаимодействии кетонов с амальгамированным Zn и концентрированной НCl (реакция Клемменсена) или с гидразином в щелочной среде (реакция Кижнера - Вольфа) группа С=О восстанавливается до СН 2 .


4. Окисление кетонов


В отличие от альдегидов, многие кетоны устойчивы при хранении к действию кислорода. Кетоны, содержащие α-метиленовую группу, окисляются SeO 2 до 1,2-дикетонов, более энергичными окислителями, напр. КМnО 4 - до смеси карбоновых кислот. Циклические кетоны при взаимодействии с HNO 3 или КМnО 4 подвергаются окислительному расщеплению цикла, например, из циклогексанона образуется адипиновая кислота. Линейные кетоны окисляются надкислотами до сложных эфиров, циклические - до лактонов (реакция Байера - Виллигера).



Если в качестве окислителя используют, например, хромовую смесь (смесь концентрированной серной кислоты и насыщенного раствора дихромата калия) при нагревании. Окисление кетонов всегда сопровождается разрывом углерод-углеродных связей, в результате образуется, в зависимости от строения исходного кетона, смесь кислот и кетонов с меньшим числом атомов углерода. Окисление протекает по схеме:


В первую очередь окисляется углерод в α-положении по отношению к карбонильной группе, как правило, наименее гидрогенизированный. Если кетон является метилкетоном, то одним из продуктов его окисления будет углекислый газ. Связь между соседними карбонильными углеродами легко рвется, в результате:



Окисление кетонов до карбоновых кислот не может происходить без расщепления углеродного скелета и требует более жестких условий, чем окисление альдегидов. А. Н. Попов, изучавший окисление кетонов, показал, что из несимметрично построенного кетона при окислении могут образоваться все четыре возможные карбоновые кислоты (правило Попова):




Если кетон содержит в α-положении третичный углеродный атом, то в результате окисления образуются три карбоновые кислоты и новый кетон, который в зависимости от условий может или подвергнуться дальнейшему окислению, или остаться неизмененным:




5. Альдольная и кретоновая конденсации

Кетоны образуют продукты замещения α-атомов Н при галогенировании действием Вr 2 , N-бромсукцинимидом, SO 2 Cl 2 , при тиилировании дисульфидами. При алкилировании и ацилировании енолятов кетонов образуются либо продукты замещения α-атомов Н в кетонах, либо О-производные енолов. Большое значение в органическом синтезе имеют альдольная и кретоновая конденсации, например:




При конденсации с альдегидами кетоны реагируют главным образом как СН-кислоты, например из кетонов и СН 2 О в присутствии основания получают α, β-ненасыщенные кетоны:


RCOCH 3 + СН 2 О → RCOCH=CH 2 + Н 2 О


Вследствие полярности карбонильной группы



кетоны могут вступать в реакции как С-электрофилы, например при конденсации с производными карбоновых кислот (конденсация Штоббе, реакция Дарзана и т. п.):


(CH 3) 2 CO + (C 2 H 5 OOCCH 2) 2 + (CH 3) 3 COK → (CH 3) 2 =C(COOC 2 H 5)CH 2 COOK + C 2 H 5 OH + (CH 3) 3 COH



Особенно легко нуклеофильной атаке подвергаются α,β-непределъные кетоны, но в этом случае атакуется двойная связь (раекция Михаэля) , например:



6. Взаимодействие с илидами


При взаимодействии с илидами Р (алкилиденфосфоранами) кетоны обменивают атом О на алкилиденовую группу (реакция Виттига) :


R 2 C=O + Ph 3 P=CHR" → R 2 C=CHR" + Ph 3 PO


7. С циклопентадиеном кетоны образуют фульвены, например:



8. При конденсации кетонов с гидроксиламином получаются кетоксимы R 2 C=NOH, с гидразином - гидразоны R 2 C=N-NH 2 и азины R 2 C=N-N=CR 2 , с первичными аминами - Шиффовы основания R 2 C=NR", со вторичными аминами - енамины.


9. Присоединение по карбонильной групе


Кетоны способны присоединять по карбонильной группе воду, спирты, бисульфит Na, амины и другие нуклеофилы, хотя эти реакции протекают не так легко, как в случае альдегидов.


Поскольку в спиртовых растворах равновесие между кетоном и его полукеталем сильно смещено влево, получить кетали из кетонов и спиртов трудно:


RCOR" + R"OH ↔ RR"C(OH)OR"


Для этой цели используют реакцию кетонов с эфирами ортомуравьиной кислоты. Кетоны взаимодействуют с С-нуклеофилами, например с литий-, цинк- или магнийорганические соединения, а также с ацетиленами в присутствии оснований (реакция Фаворского) , образуя третичные спирты:



В присутствии оснований к кетонам присоединяется HCN, давая α-гидроксинитрилы (циангидрины):


R 2 C=O + HCN → R 2 C(OH)CN


При катализе кислотами кетоны реагируют как С-электрофилы с ароматическими соединениями, например:



Гомолитическое присоединение кетонов к олефинам приводит к α-алкилзамещенным кетонам, фотоциклoприсоединение к оксетанам, например:



Получение кетонов

1. Окисление спиртов

Кетоны могут быть получены окислением вторичных спиртов. Окислителем, обычно применяемым для этой цели в лабораториях, является хромовая кислота, употребляемая чаще всего в виде «хромовой смеси» (смесь бихромата калия или натрия с серной кислотой). Иногда применяются также перманганаты различных металлов или перекись марганца и серная кислота.

2. Дегидрогенизация (дегидрирование) вторичных спиртов

При пропускании паров спирта через нагретые трубки с мелко раздробленной, восстановленной водородом металлической медью вторичные спирты распадаются - на кетон и водород. Несколько хуже эта реакция проходит в присутствии никеля, железа или цинка.

3. Из одноосновных карбоновых кислот

Кетоны могут быть получены сухой перегонкой кальциевых и бариевых солей одноосновных кислот. Для всех кислот, кроме муравьиной, реакция идет следующим образом:



Чаще восстанавливают не самые кислоты, а их производные, например хлорангидриды:


CH 3 -CO-Cl + 2H → CH 3 -CHO + HCl


т. е. образуется кетон с двумя одинаковыми радикалами и карбонат кальция.


Если взять смесь солей двух кислот или смешанную соль, то наряду с предыдущей реакцией происходит также реакция между молекулами разных солей:



Вместо сухой перегонки готовых солей используют также контактный способ, так называемую реакцию кетонизации кислот, состоящую в том, что пары кислот пропускают при повышенной температуре над катализаторами, в качестве которых применяют углекислые соли кальция или бария, закись марганца, окись тория, окись алюминия и др.


Здесь сначала образуются соли органических кислот, которые затем разлагаются, регенерируя вещества, являющиеся катализаторами. В результате реакция идет, например, для уксусной кислоты по следующему уравнению:


2CH 3 -COOH → CH 3 -CO-CH 3 + H 2 O + CO 2

4. Действие воды на дигалоидные соединения

Кетоны могут получаться при взаимодействии с водой дигалоидных соединений, содержащих оба атома галоида при одном и том же атоме углерода. При этом можно было бы ожидать обмена атомов галоида на гидроксилы и получения двухатомных спиртов, у которых обе гидроксильные группы находятся при одном и том же атоме углерода, например:



Но такие двухатомные спирты в обычных условиях не существуют, они отщепляют молекулу воды, образуя кетоны:

5. Действие воды на ацетиленовые углеводороды (реакция Кучерова)

При действии воды на гомологи ацетилена в присутствии солей окиси ртути, получаются кетоны:


CH 3 -C≡CH + H 2 O → CH 3 -CO-CH 3

6. Получение с помощью магний- и цинкорганических соединений

При взаимодействии производных карбоновых кислот с некоторыми металлоорганическими соединениями присоединение одной молекулы металлоорганического соединения по карбонильной группе протекает по схеме:



Если на полученные соединения подействовать водой, то они реагируют с ней с образованием в кетонов:



При действии на амид кислоты двух молекул магнийорганического соединения, а затем воды получаются кетоны без образования третичных спиртов:



7. Действие кадмийорганических соединений на хлорангидриды кислот

Кадмийорганические соединения взаимодействуют с хлорангидридами кислот иначе, чем магний- или цинкорганические:


R-CO-Cl + C 2 H 5 CdBr → R-CO-C 2 Н 5 + CdClBr


Поскольку кадмийорганические соединения не вступают в реакцию с кетонами, здесь не могут получаться третичные спирты.

Применение кетонов

В промышленности кетоны используют как растворители, фармацевтические препараты и для изготовления различных полимеров. Важнейшими кетонами являются ацетон, метилэтиловый кетон и циклогексанон.

Физиологическое действие

Токсичны. Обладают раздражающим и местным действием, проникают через кожу, особенно хорошо ненасыщенные алифатические. Отдельные вещества обладают канцерогенным и мутагенным эффектом. Галогенпроизводные кетонов вызывают сильное раздражение слизистых оболочек и ожоги при контакте с кожей. Алициклические кетоны обладают наркотическим действием.


Кетоны играют важную роль в метаболизме веществ в живых организмах. Так, убихинон участвует в окислительно-восстановительных реакциях тканевого дыхания. К соединениям, содержащим кетонную группу, относятся некоторые важные моносахариды (фруктоза и др.), терпены (ментон, карвон), компоненты эфирных масел (камфора, жасмон), природные красители (индиго, ализарин, флавоны), стероидные гормоны (кортизон, прогестерон), мускус (мускон), антибиотик тетрациклин.


В процессе фотосинтеза 1,5-дифосфат-D-эритро-пентулозы (фосфолированная кетопентоза) является катализатором. Ацетоуксусная кислота - промежуточный продукт в цикле Креббса.


Наличие в моче и крови человека кетонов говорит о гипогликемии, различных расстройствах метаболизма или кетоацидозе.

Введение

Это единения, содержащие карбонильную группу = С = О. У альдегидов карбонил связан радикалом и водородом. Общая формула альдегидов:

У кетонов карбонил связан с двумя радикалами. Общая формула кетонов:

Альдегиды являются более активными, чем кетоны (у кетонов карбонил как бы блокирован радикалами с обеих сторон).

Кла сс ификация

1.по углеводородному радикалу (предельные, непредельные, ароматические, циклические).

2.по числу карбонильных групп (одна, две и тд.)

Изомерия и номенклатура

Изомерия альдегидов обусловлена изомерией углеродного скелета. У кетонов помимо изомерии углеродного скелета наблюдается изомерия положения карбонильной группы. По тривиальной номенклатуре альдегиды называют соответственно карбоновым кислотам, в которые они переходят при окислении. По научной номенклатуре названия альдегидов складываются из названий соответствующих углеводородов с добавлением окончания аль. Атом углерода альдегидной группы определяет начало нумерации. По эмпирической номенклатуре кетон называют по радикалам, связанным с карбоксилом с добавлением слова кетон. По научной номенклатуре названия кетонов складываются из названий соответствующих углеводородов с добавлением окончания ОН, в конце ставят номер углеродного атома, при котором стоит карбонил. Нумерацию начинают от ближайшего к кетонной группе конца цепи.

Представители предельных альдегидов. CnH2n+1C=O

Представители предельных кетонов

Способы получения

1) Путем окисления спиртов. Из первичных спиртов получаются альдегиды, из вторичных кетоны. Окисление спиртов происходит при действии сильных окислителей (хромовая смесь) при небольшом нагревании. В промышленности в качестве окисления используют кислород воздуха в присутствии катализатора - меди (Cu) при t0= 300-5000С

СН3 - СН2 - СН2 - ОН + О К2Cr2O7 CH3 - CH2 - C =O + HOH

пропанол -1 H

пропаналь

СН3 - СН - СН3 + О К2Cr2O7 СН3 - С - СН3

пропанол -2 пропанон

2) Термическое разложение кальциевых солей карбоновых кислот, причем, если взть соль муравьиной кислоты, то образуются альдегиды, а если других кислот, то кетоны.

О уксусный альдегид

О - Са прокаливание СаСО3 + СН3 - С = О

СН3 -С - О СН3

Это лабораторные способы получения.

3) По реакции Кучерова (из алкинов и воды, катализатор - соли ртути в кислой среде). Из ацетилена образуются альдегиды, из любых других алкинов - кетоны.

СН = СН + НОН СН2 = СН - ОН СН3 - С = О

ацетилен виниловый СН3

спирт уксусный альдегид

СН3 - С = СН + НОН СН3 - С = СН2 СН3 - С = О

пропин ОН СН3

пропенол - 2 ацетон

4) Оксосинтез. Это прямое взаимодействие алкенов с водным газом (СО+Н2) в присутствии кобальтового или никелевого катализаторов под давлением 100- 200 атмосфер при t0 = 100-2000С. По этому способу получают альдегиды

СН3 - СН2 - СН2 - С = О

бутаналь Н

СН3 - СН = СН2 + СО + Н2

СН3 - СН - С = О

2-метилпропаналь

5) Гидролиз дигалогенпроизводных. Если оба галогена находятся при первичном углеродном атоме, то образуется альдегид, если при вторичном - кетон.

СН3 - СН2 - С - CL2 + HOH 2HCL + CH3 - CH2 - C = O

1,1-дихлорпропен пропеналь

СН3 - С - CH3 + HOH 2HCL + CH3 - C = O

2,2-дихлорпропан пропанон

Муравьиный альдегид - газ, другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; альдегиды обладают удушливым запахом, который при сильном разведении становится приятным(цветочным или фруктовым). Кетоны пахнут довольно приятно. Следовательно карбонил = С =О носитель запаха, поэтому альдегиды и кетоны применяются в парфюмерной промышленности. температура кипения альдегидов и кетонов возрастает по мере увеличения молекулярного веса.

Природа карбонильной группы

Большинство реакций альдегидов и кетонов обусловлено присутствием карбонильной группы. рассмотрим природу карбонила = С =О. например,

1.углерод с кислородом в карбониле связаны двойной связью: одна сигма - связь, другая пи - связь. За счет разрыва П- связи у альдегидов и кетонов идут реакции присоединения (нуклеофильного типа):

R - C = O R - C - O:

Кислород является более электроотрицательным элементом, чем углерод, и поэтому электронная плотность у атома кислорода больше, чем у атома углерода. При реакциях присоединения к углероду будет присоединяться нуклеофильная часть реагента, к кислороду - электрофильная часть.

2.приреакциях замещения может замещаться кислород карбонила. При этом происходит разрыв двойной связи между С и О

3.карбонил влияет на связи С - Н в радикале, ослабляя их, особенно в альфа-положении, то есть рядом с карбонильной группой.

Н - ?С -? С - ?С - С = О

При действии свободных галогенов будет замещаться водород в углеродном радикале при альфа- углеродном атоме.

СН3 - СН2 - СН2 - С = О + СL2 CH3 - CH2 - CH - C = O + HCL

Хлормасляный альдегид

Химические свойства

Из всех классов органических соединений альдегиды и кетоны самые реакционноспособные. Причем в химическом отношении альдегиды более активны, чем кетоны. Для них характерны следующие реакции: окисления, присоединения, замещения, полимеризации, конденсации. Для кетонов не характерны реакции полимеризации.

Реакции окисления

Альдегиды окисляются легко, даже слабыми окислителями HBrO, OH, раствор Фелинга. При окислении альдегидов образуются карбоновые кислоты.

СН3 - С = О + О СН3 - С = О - уксусная кислота

Если окислителем является OH , то выделяется свободное серебро (реакция «серебряного зеркала» - это качественная реакция на альдегиды).

СН3 - С = О + 2OH СН3 - С = О + 2 Ag + 4 NH3 + Н2О

Окисление кетонов происходит гораздо труднее и только сильными окислителями. Продуктами окисления являются карбоновые кислоты. При окислении кетона образуется спиртокетон, затем дикетон, который, разрываясь, образует кислоты.

СН3 - СН2 - С - СН2 - СН3 + О СН3 - СН - С - СН2 - СН -Н2О+О СН3 - С - С - СН2 - СН3 +О +Н2О

О ОН О О О

диэтилкетон спиртокетон дикетон

СН3 - С = О + О = С - СН2 - СН3

уксусная к-та пропионовая к-та

В случае смешанного кетона окисление протекает по правилу Попова - Вагнера, то есть главное направление реакции - окисление соседнего с карбонилом наименее гидрированного атома углерода. Но помимо с главным направлением будет и побочное направление реакции, то есть окислится углеродный атом с другой стороны карбонила. При этом образуется смесь различных карбоновых кислот.

СН3 - С - СН - СН3 - спиртокетон +О - Н2О

СН3 - С - СН2 - СН3 ОН О

О СН2 - С - СН2 - СН3 + О - Н2О

Бутанон-2 спиртокетон

СН3 - С - С - СН3 +О +Н2О 2 СН3 - С = О

дикетон уксусная кислота

СН-С - СН2 - СН3 + О +Н2О НС = О + СН3 - СН2 - С = О

дикетон муравьиная к-та пропионовая к-та

Реакции присоединения

Протекают за счет разрыва пи-связи в карбониле. Эти реакции нуклеофильного присоединения, то есть сначала к положительно заряженному углероду карбонила присоединяется нуклеофильная часть реагента со свободной электронной парой (протекает медленно):

С+ = О - + :Х - = С - О -

Вторая стадия - присоединение протона или другого катиона к образовавшемуся аниону (протекает быстро):

С - О - + Н + = С - ОН

1.Присоединение водорода.

При этом из альдегидов получаются первичные спирты, из кетонов - вторичные. Реакция протекает в присутствии катализаторов Ni, Pt и др.

СН3 - С = О + Н + : Н - СН3 - С - Н

уксусный альдегид этанол

СН3 - С - СН3 + Н+ : Н - СН3 - СН - СН3

пропанон пропанол -2

2.Присоединение бисульфата натрия (гидросульфата):

R - C = O + HSO3Na R - C - SO3Na

При этом образуются бисульфитные производные. Эту реакцию используют для очистки альдегидов и кетонов и выделения их из примесей.

3.Присоединение синильной кислоты. При этом образуются?- оксинитрилы, которые являются промежуточными продуктами синтеза оксикислот, аминокислот:

R - C = O + HCN R - C - C =N

Оксинитрил

4. Присоединение аммиака NH3. При этом образуются оксиамины.

R - C = O + H - NH2 CH3 - CH - NH2

Оксиамин

5. Присоединение магнийгалогенорганических соединений (реактив Гриньяра). Реакцию используют для получения спиртов.

6.Присоединение спиртов (безводных). При этом первоначально образуются полуацетали (как обычная реакция присоединения). Затем при нагревании с избытком спирта образуются ацетали (как простые эфиры).

R - C = O + СН3 - ОН R - CН - О - СН3 +СН3ОН R - CН - О - СН3

H ОН О - СН3

полуацеталь ацеталь

В природе очень много соединений полуацетального и ацетального характера, особенно среди углеводов (сахаров).

Реакции замещения

Кислород карбонильных групп может замещаться на галогены и некоторые азотсодержащие соединения.

1.Замещение галогенами. Происходит при действии на альдегиды и кетоны фосфорных соединений галогенов PCL3 и PCL5. При действии же свободными галогенами замещается водород в углеводородном радикале при?-углеродном атоме.

PCL5 CH3 - CH2 - CH -CL2 + POCL3

СН3 - СН2 - С = О 1,1-дихлорпопин (фосфора хлорокись)

Н +CL2 CH3 - CH - CH = O + HCL

пропаналь CL

Монохлорпропионовый альдегид

2.Реакция с гидроксиамином NH2OH. При этом образуются окислы альдегидов (альдоксилы) и кетонов (кетоксины).

СН3 - СН = О + Н2N - OH CH3 - CH - N - OH + H2O

уксусный альдегид оксиэтаналь

Эту реакцию применяют для количественного определения карбоксильных соединений.

3.Реакция с гидразином NH2 - NH2 . Продуктами реакции являются гидразины (когда реагирует одна молекула альдегида или кетона) и азины (когда реагируют две молекулы).

СН3 - СН = О + NH2 - NH2 СН3 - СН = N - NH2

этаналь гидразин гидразин этаналь

СН3 - СН = N - NH2 + О = СН - СН3 СН3 - СН =N - N = НС - СН3

азин этаналь (альдазин)

4.Реакции с фенилгидразином. С6Н5 - NH - NH2 . Продуктами реакции являются фенилгидразины.

СН3 - СН = О + Н2N - NH - C6H5 CH3 - CH = N - NH - C6H5

Фенилгидразонэтаналь

Окислы, гидразины, азины, фенилгидразины - твердые кристаллические вещества с характерными температурами плавления, по которым определяют природу (строение) карбонильного соединения.

Реакции полимеризации

Характерны только для альдегидов. Но и то, только газообразные и летучие альдегиды (муравьиный, уксусный) подвергаются полимеризации. Это очень удобно при хранении этих альдегидов. муравьиный альдегид полимеризуется в присутствии серной кислоты или соляной, при нормальной температуре. Коэффициент полимеризации n=10-50. Продукт полимеризации - твердое вещество, называется - полиоксиметилен (формалин).

Н - С = О - С - О - С - О - ...- С - … - С - О -

Н Н Н Н Н n

Полиоксиметилен

Это твердое вещество, но его можно превратить в муравьиный альдегид, разбавляя водой и слегка подогревая.

Уксусный альдегид под влиянием кислот образует жидкий циклический триммер- паральдозу и твердый тетрамер - метальдозу («сухой спирт»).

3 СН3 - СН = О О

СН3 - НС СН - СН3

паральдегид

4 СН3 - СН = О СН3 - НС О

Метальдегид

Реакции конденсации

1.Альдегиды в слабо основной среде (в присутствии ацетона калия, поташа, сульфата калия) подвергаются альдольной конденсации с образованием альдегидо - спиртов, сокращенно называемых альдолями. Разработана эта реакция химиком А.П. Бородиным (он же композитор). В реакции участвует одна молекула своей карбонильной группой, а другая молекула водородом при?- углеродном атоме.

СН3 - СН = О + НСН2 - СН = О СН3 - СН - СН2 - СН = О

ОН альдоль

(3 - оксибутаналь или?-оксимасляный альдегид)

СН3 - СН - СН2 - СН = О + НСН2 - СН = О СН3 - СН - СН2 - СН - СН2 -СН =О

гексенциол-3,5-аль

С каждым разом увеличивается число групп ОН. Получается альдегидная смола при уплотнении большого числа молекул.

2. Кротоновая конденсация. для альдегидов она является продолжением альдольной конденсации, то есть при нагревании альдоль отщепляет воду с образованием непредельного альдегида.

СН3 - СН - СН2 - СН = О СН3 - СН = СН - С = О

кротоновый альдегид

Рассмотрим эти реакции для кетонов.

СН3 - С = О + НСН2 - С = О СН3 - С - СН2 - С = О СН3 - С = СН - С = О

СН3 СН3 ОН СН3 СН3 СН3 СН3

4 - окси - 4 - метилпентанон-2 4 - метилпентан -3-он-2

3.Сложноэфирная конденсация. Характерна только для альдегидов. Разработана В.Е.Тищенко. протекает в присутствии катализаторов алкоголятов алюминия (CH3 - CH2 - O)3 AL.

CH3 - CH = O + O = HC - CH3 CH3 - СН2 - О - С = О

уксусноэтиловый эфир

1.СН2 = СН - СН =О - пропен-2-аль - акриловый альдегид или акролеин

2.СН3 - СН = СН - СН = О - бутен - 2 - аль - кротоновый альдегид

Акролеин иначе называют чад, он получается при нагревании горении жиров. В химическом отношении непредельные альдегиды обладают всеми свойствами предельных по карбонильной группе, а за счет двойной связи в радикале могут вступать в реакции присоединения.

У этих альдегидов сопряженная система двойных связей, поэтому в химическом отношении они отличаются реакциями присоединения. Присоединение водорода, галогенов, галогенводородов происходит по концам сопряженной системы.

Электронная плотность смещена к кислороду и к нему направляются положительно заряженная часть реагента, а к положительно поляризованному углероду - отрицательная часть реагента.

СН2+ = СН- - СН+= О- + Н+: Br- CH2 - CH = CH - OH CH2 - CH2 - CH = O

3-бромпропаналь

Образующаяся при этом енольная форма альдегида немедленно превращается в более устойчивую карбонильную форму. Таким образом присоединение галогенводородов в радикал идет против правила Марковникова.

Ароматические альдегиды

Представители С6Н5 -СН = О - бензойный альдегид. Это жидкость с запахом горького миндаля, содержится в косточках слив, вишен, диких абрикос и других плодах.

С писок использованной литературы

1) Гранберг И.И. Органическая химия. - М., 2002

2) Ким А.М. Органическая химия. - Новосибирск, 2007

error: