Реакция полимеризации и поликонденсации. Высокомолекулярные соединения


34. Линейная и трёхмерная поликонденсация;

Поликонденсация – процесс образования полимеров из би- или полифункциональных

мономеров, который чаще всего сопровождается выделением побочных

низкомолекулярных соединений (воды, спирта и т.д.). Является одним из видов

ступенчатого синтеза полимеров.

Различают линейную и трехмерную поликонденсацию.

Поликонденсация, в которой участвуют только бифункциональные мономеры, приводит

к образованию линейных молекул полимера и называется линейной.

Процесс поликонденсации, в котором участвуют молекулы с тремя или большим

числом функциональных групп, приводит к образованию разветвленных или трехмерных

(сетчатых, сшитых) структур и называется трехмерной поликонденсацией.

Линейная поликонденсация

На свойства получаемых полимеров большое влияние оказывает функциональность

исходных соединений. Если оба мономера бифункциональны, то при поликонденсации

образуются строго линейные высокомолекулярные соединения, вещества, растворимые в

растворителях.

1.1 Реакции, лежащие в основе получения линейных полимеров

1. Полиэтерификация

2. Трехмерная поликонденсация

При участии в реакции поликонденсации веществ, имеющих более двух функциональных

групп, получают полимер сетчатой структуры:

Первая стадия – образуется низкомолекулярный, плавкий, растворимый полимер

линейного строения. Получают в мягких условиях.Во второй стадии уже начинается образование сетки, полимер нерастворимый, но

мягкий и эластичный, в третьей стадии – неплавкий и нерастворимый. Вторую,

переходную стадию не всегда можно заметить.

Иногда одни и те же исходные вещества в зависимости от соотношения образуют

полимеры различной структуры.

Пример: феноло-формальдегидные смолы.

Если мольное соотношение фенол:формальдегид = 1:1, то получают термопластичную

смолу – новолак.

Если формальдегид взят в избытке, то получают на первой стадии линейный полимер,

Метилольные группы способны участвовать в реакции трехмерной поликонденсации,

поэтому вязкость увеличивается, полимер перестает растворяться в растворителях –

образуется резит.

В процессе трехмерной поликонденсации происходит образование трехмерной структуры

Нерастворимого геля. Реакционная смесь разделяется на две части: нерастворимый

гель и растворимый золь, который может быть отделен от геля путем экстракции

растворителями. Этот момент называют точкой гелеобразования. Нерастворимость геля

объясняется тем, что он представляет собой единую пространственную сетку, в которой

отдельные цепи связаны между собой химически настолько прочно, что растворитель не в

состоянии отделить их друг от друга. Такое отделение было бы равноценно деструкции

полимера. Растворение возможно только в том случае, когда активность растворителя

достаточна, чтобы вызвать химическое расщепление отдельных связей и химическое

изменение природы полимера.

В точке гелеобразования среднечисловая молекулярная масса невелика,

среднемассовая молекулярная масса стремится к бесконечности.

После достижения точки гелеобразования количество золя начинает быстро убывать

вследствие его перехода в гель. Вязкая реакционная масса сначала превращается в

эластичный материал, а потом в твердый неплавкий и нерастворимый продукт. Наряду с

межмолекулярными процессами может идти реакция между функциональными группами

одной сетчатой структуры.

^ 35. Равновесная и неравновесная поликонденсация.

По характеру химических процессов, лежащих в основе реакции поликонденсации,

различают равновесную и неравновесную поликонденсацию.

Если в результате поликонденсации, наряду с полимерами, получается

низкомолекулярное вещество, способное реагировать в условиях реакции с

образовавшимся полимером, то процесс является равновесным. Например:

Если образовавшееся при поликонденсации низкомолекулярное соединение не

реагирует в условиях реакции с полимером, то поликонденсация является

неравновесной. Пример:

Вследствие обратимости этой реакции, наряду с образовавшимся димером в реакционной

массе всегда присутствует значительное количество исходных веществ. В системе

существуют молекулы с различной молекулярной массой. На молекулярную массу

полимера оказывают влияние различные деструктивные реакции. Деструктивные реакции

протекают не только в процессе поликонденсации, но и после ее окончания. Наиболее

часто встречаются следующие деструктивные реакции:

По скорости деструктивные процессы можно расположить в ряд: ацидолиз > алкоголиз >

эфиролиз.

Процесс роста макромолекул чаще всего останавливается, когда молекулярная масса

полимера достигает величины ≤ 30 000. Прекращение роста цепей может происходить как

с сохранением на концах активных функциональных групп, так и с химической

дезактивацией реакционных центров.

Причинами остановки роста цепей могут быть:

 увеличение вязкости, препятствующее сближению функциональных групп;

 установление равновесия с образующимся низкомолекулярным продуктом;

 неэквивалентное соотношение исходных функциональных групп.

В основном, обрыв цепи происходит при взаимодействии растущей макромолекулы с

примесями, имеющими только одну реакционноспособную группу.

NB! При проведении равновесной поликонденсации накопление в системе

низкомолекулярного продукта приводит к ускорению обратной реакции. Поэтому

процессы равновесной поликонденсации практически всегда проводят с удалением

образующегося низкомолекулярного продукта из зоны реакции. С повышением

эффективности этой операции существенно увеличивается степень полимеризации

получаемого полимера. Часто для более полного удаления побочных продуктов

поликонденсации прибегают к продувке реакционной массы азотом или к применению

Для ускорения поликонденсации используют катализаторы. В большинстве случаев это

те же вещества, которые катализируют типичные реакции конденсации (минеральные

кислоты, кислые соли, щелочи, органические сульфокислоты и др.). Поскольку

катализатор не влияет на положение равновесия, добавление его не может отражаться на

равновесной молекулярной массе полимера. Вместе с тем катализатор может влиять на

размер макромолекулы, т.к. он благоприятствует побочным реакциям.

Молекулярная масса получаемого равновесной поликонденсацией полимера не зависит

от концентрации мономера. Скорость поликонденсации пропорциональна

концентрации реагирующих веществ. Поэтому с увеличением концентрации мономера

сокращается время, необходимое для достижения в системе равновесия.

^ Неравновесная поликонденсация

Отличительной особенностью такой поликонденсации является необратимость.

Отсутствие обменных деструктивных реакций объясняется двумя причинами:

1. процесс проводится при таких низких температурах, когда обменные реакции

невозможны, а исходные вещества достаточно реакционноспособны, чтобы

образовать полимер;

2. в процессе образуются полимеры такой структуры, что деструктивные реакции в

принципе невозможны. Например, при синтезе полисульфидных каучуков

образуется хлорид натрия, который не может оказать деструктивного действия на

полисульфид.

К числу необратимых процессов относятся, например, синтез феноло-формальдегидных

смол, полисилоксанов. Типичными примерами низкотемпературной реакции

поликонденсации является получение полиамидов и полиэфиров из дигалогенангидридов

дикарбоновых кислот и диаминов или дифенолов.

Для связывания выделяющегося галогенводорода используют гидроксиды натрия или

калия, карбонат калия.

Обрыв цепи при неравновесной поликонденсации обусловлен потерей активности

функциональных групп по разным причинам. Это может быть:

●взаимодействие концевой группы растущей цепи с монофункциональным

соединением или примесями;


Для максимального превращения исходных веществ в полимер из реакционной системы

надо удалять низкомолекулярные продукты реакции. Это способствует получению

полимеров с высокой молекулярной массой. С этой же целью поликонденсацию проводят

в токе инертного газа при высокой температуре; на заключительной стадии – в вакууме.

В некоторых случаях при взаимодействии функциональных групп параллельно с

поликонденсацией может протекать реакция образования циклов. Циклизация идет только

тогда, когда образуются ненапряженные 5- и 6-членные циклы, например,

аминомасляной, аминовалериановой кислот. Если при внутримолекулярном

взаимодействии должны образоваться 8,9,10-членные циклы, то циклизация не

происходит, и в результате реакции образуются линейные полимеры.

^ 33. Гомо- и сополиконденсация

Поликонденсация, в которой участвует только один мономер, содержащий минимум

две функциональне группы, называется гомополиконденсацией:

хHO−(СH2)6–COOH →H[−О−(CH2)6−CO−)xOH + (x –1)H2O

Поликонденсация с участием, по крайней мере, двух разных типов мономеров, каждый

из которых содержит одинаковые функциональные группы, реагирующие только с

функциональными группами другого, называется гетерополиконденсацией (например, синтез

полигексаметиленадипамида (найлон-6,6) из гексаметилендиамина и адипиновой кислоты):

хNH2–(CH2)6–NH2 + xHOOC–(CH2)4 –COOH →

→H−xOH + (x –1)H2O

При гомо- и гетерополиконденсации образуются макромолекулы гомополимеров,

которые состоят из повторяющихся звеньев одного типа. Существуют также реакции

сополиконденсации, приводящие к образованию сополимеров. В последнем случае макро-

совместную поликонденсацию мономеров (амино- или оксикислот), каждый из которых

способен вступать в реакцию гомополиконденсации. Например, при биполиконденсации

аминокапроновой и аминоэнантовой кислот:

xNH2–(CH2)5–COOH + yNH2 – (CH2)6 – COOH →

→ Hx−yOH + zH2O

образуется сополимер, в состав которого входят два различающихся звена.

Более распространены реакции интербиполиконденсации с участием трех мономеров.

Функциональные группы двух из этих мономеров (называемых сомономерами)

непосредственно между собой не реагируют, но способны взаимодействовать с

функциональными группами третьего мономера (называемого интермономером). Например,

при реакции гексаметилендиола и этиленгликоля с хлорангидридом терефталевой кислоты;

НО−(СН2)6−ОH + НО−(СН2)2−ОH + CICO−Ph−COCI →

→H[О−(CH2)6−OC(O)−Ph –(O)CO−(СH2)2−O−]H + HCI образуется чередующийся

сополимер, в котором звенья интермономера строго чередуются со звеньями сомономеров.

^ 30. Сополимеризация. Синтез привитых и блоксополимеров

Сополимеризация - полимеризация , в которой участвуют два или несколько различных мономеров . В результате сополимеризации образуются сополимеры , макромолекулы которых состоят из двух или более разнородных структурных звеньев. Сополимеризация позволяет получать высокомолекулярные вещества с разнообразными свойствами.

Р-ции образования привитых сополимеров подразделяют на два осн. типа: взаимод. мономера с полимером и взаимод. разл. типов полимеров или олигомеров (не менее двух) между собой. В первом типе р-ций полимер служит инициатором, возбуждающим радикальную или ионную полимеризацию мономера , и обычно образует основную цепь (хребет) получаемого привитого сополимера , а полимеризующнйся мономер-боковые (привитые) цепи. В пром-сти наиб. распространена радикальная полимеризация мономеров в среде, содержащейполимер (метод широко используют для модификации ненасыщ. полимеров , напр. каучуков ), а также из газовой фазы на полимерной подложке (газофазная прививка).

При получении привитых сополимеров р-циями межцепного взаимод. необходимо, чтобы в одном из полимеров функц. группы находились на конце цепи, во втором-в боковой группе. Присоединение боковых цепей происходит либо при непосредств. взаимодействии функц. групп, либо с помощью сшивающих низкомол. бифункцион. реагентов , напр.:

Большинством методов получают продукты (смеси), содержащие наряду с привитыми сополимерами исходные или образовавшиеся линейные гомополимеры, а также разветвленные или сшитые гомо- и сополимеры . В пром-сти из таких смесей привитых сополимеров обычно не выделяют, а ограничиваются получением материалов с воспроизводимыми составом и св-вами.

Блок-сополимеры

Cостоят из линейных макромолекул, содержащих чередующиеся блоки полимеров различного состава или строения, соединенные между собой химическими связями. Строение макромолекул м. блок-сополимеры представлено, например, схемами:

*(А)n-(В)m;

*(А)n-(В)m-(А)l-(В)k;

*(А)n-(В)m-(С)l;

*(А)n-Х-(В)m-Х-(А)l,

где А, В, С-мономерные звенья;

n, m, l, k-число этих звеньев в блоке;

Х - фрагмент молекулы бифункционального низкомолекулярного вещества (сшивающего агента).

Частный случай блок-сополимеров – стереоблок-сополимеры, содержащие в макромолекуле блоки одинакового состава, но различной пространственной структуры.

Число мономерных звеньев в блоке должно быть достаточным для проявления в нем всей совокупности свойств данного полимера.

Если блоки состоят из несовместимых полимеров, то блок-сополимеры приобретают микрогетерогенную структуру и в них сочетаются с вещества полимеров, образующих отдельные блоки. На этом основан один из эффективных путей химического модифицирования полимеров.

К числу блок-сополимеры, имеющих важное промышленное значение, относятся термоэластопласты , макромолекулы которых состоят из блоков термопластов (полистирол, полиэтилен, полипропилен) и гибких блоков эластомеров (полибутадиен, полиизопрен, статистические сополимеры бутадиена со стиролом или этилена с пропиленом) .

Блок-сополимеры, образуемые полимерами, резко различающимися по растворимости (напр., полиэтиленоксид - полипропиленоксид), используют для получения неионогенных ПАВ.

Гидрофилизация волокнообразующих полимеров, например полиэтилентерефталата, введением в их макромолекулы гидрофильных блоков, например полиэтиленоксидных, - один из способов повышения восприимчивости полимеров к красителям.

^ МЕТОДЫ ПОЛУЧЕНИЯ БЛОК И ПРИВИТЫХ СОПОЛИМЕРОВ

Блоксополимеры и привитые сополимеры отличаются по свойствам от статистических сополимеров.

Блок- и привитые сополимеры обычно сочетают свойства составляющих компонентов (блоков или основных цепей и привитых цепей), а статистические сополимеры не проявляют свойств, характерных индивидуальным компонентам.

Для получения блок- и привитых сополимеров не подходят методы прямой сополимеризации и используются реакции химических превращений полимеров, которые осуществляются двумя основными способами:

1) реакциями в системе полимер – мономер,

2) реакциями в системе полимер-полимер.

^ Реакции в системе полимер – мономер

Для получения блок- и привитых сополимеров необходимо в макромолекуле создать реакционные центры, на которых происходит полимеризация. Для этих целей используется радикальная полимеризация и реже – ионная полимеризация.

Радикальную атаку макромолекул можно осуществлять в одну и две стадии и в зависимости от этого будут получаться различные продукты.

(А) Радикальная полимеризация (одностадийный метод)

1) В мономере В растворяют гомополимер, состоящий из звеньев А, и добавляют радикальный инициатор.

2) Под действием радикала, образовавшегося при распаде инициатора, происходит радикальная полимеризация мономера В.

3) Затем осуществляется передача цепи от макрорадикала цепи из звеньев В на полимер из звеньев А путём отрыва подвижного атома водорода.

В результате в основной цепи полимера из звеньев А образуется радикал и происходит привитая полимеризация мономера В.

Например, прививка стирола к полибутадиену идёт по схеме:


Полученный привитой сополимер называется полибутадиен-пр- стирол, где первым в названии указывается мономер, образующий основную полимерную цепь, а вторым – прививаемый мономер.

В результате рассмотренного одностадийного метода образуется смесь продуктов, состоящая из привитого сополимера, гомополимера из звеньев мономера А и гомополимера из звеньев мономера В.

Эффективность такого метода получения привитого сополимера зависит от скорости передачи цепи на полимер, которая определяется температурой, соотношением полимера и мономера, концентрацией инициатора, подвижностью отрываемого от цепи атома, реакционной способностью мономера В и полимера . Метод характеризуется технологической простотой и широко применяется в промышленности.

В общем виде прививку путем передачи цепи можно изобразить схемой:

(Б) Радикальная полимеризация (двухстадийный метод)

Получить привитой сополимер без примесей гомополимеров можно путем проведения реакции в две стадии. На первой стадии на гомополимер действуют свободными радикалами (R ) или γ−облучением, а затем на второй стадии реакции вводят мономер В. Реакция осуществляется по схеме:


Рассматриваемый метод позволяет получить чистый привитой сополимер, однако скорость реакции в этом случае меньше, чем при облучении смеси гомополимера и мономера.

^ Получение макрорадикалов:

Для получения привитых сополимеров генерирование макрорадикалов может быть осуществлено разными путями:


  1. При УФ-облучении полимера:

2) При окислении полимеров на воздухе с последующим разложением гидропероксидных групп при нагреве:


Разложение гидропероксидных групп в макромолекуле возможно в присутствии восстановителя:


Прививку методом передачи цепи проводят в массе, растворе, суспензии и эмульсии. Этим методом в промышленности получают ударопрочный ПС, сополимеры акрилонитрила, бутадиена и стирола (АВС-пластик)

(В) Ионная полимеризация

При анионной полимеризации отсутствие обрыва цепей приводит к образованию “живых” полимеров, когда длительно сохраняется активность растущих цепей. “Живые” полимеры используют для получения блоксополимеров. Получение блоксополимеров осуществляют путем последовательного введения различных мономеров в реакционную смесь, содержащую “живой” полимер. Это позволяет регулировать длину, число и порядок чередование полимерных блоков в макромолекулах сополимеров.

Пример: К “живому” полимеру, состоящему из звеньев мономера А, добавляют второй мономер В и при этом рост цепи продолжается с образованием блока из звеньев мономера В:

“Живые” полимеры можно дезактивировать введением протонодонорного соединения (например, СН3ОН).

(Г) Механохимический синтез

Для получения блоксополимеров проводят механическую деструкцию смесей гомополимера, состоящего из звеньев мономера А, с мономером В. В результате механической деструкции гомополимера образуются макрорадикалы, на которых протекает полимеризация мономера В:


Механическую деструкцию полимеров проводят путём вальцевания, измельчения, экструзии, вибропомола, облучении ультразвуком, при замораживании растворов полимеров и их размораживании и др. При проведении таких реакций необходимо учитывать протекание побочных реакций деструкции и рекомбинации макрорадикалов.

^ Реакции в системе полимер – полимер

Основой этого метода получения блоксополимеров и привитых сополимеров является взаимодействие полимеров или олигомеров путем конденсации функциональных групп или путем рекомбинации макрорадикалов различных полимеров.

(А) Конденсационный метод

Получение блоксополимеров и привитых сополимеров возможно реакциями функциональных групп различных гомополимеров, когда функциональные группы одного гомополимера способны реагировать с функциональными группами другого гомополимера. Если функциональные группы гомополимеров являются концевыми, то образуются блоксополимеры:

Если функциональные группы у одного гомополимера рапределены вдоль цепи, а у другого гомополимера являются концевыми, то при их взаимодействии получаются привитые сополимеры:


Пример получения блоксополимера путём конденсации функциональных групп различных гопополимеров:

Пример получения привитого сополимера путём конденсации функциональных групп различных гопополимеров:

Образование привитых сополимеров возможно и с помощью низкомолекулярных бифункциональных сшивающих агентов (диизоцианатов, диаминов, дихлорангидридов и др.)


Преимуществом такого способа получения привитых сополимеров является возможность использования в качестве боковых цепей готовых полимеров с требуемыми свойствами, а недостатками является низкая скорость конденсации и небольшие выходы привитых сополимеров вследствие трудности проведения реакции до полного превращения реагентов.

Конденсация - это основа создания полимерных синтетических материалов: поливинилхлорида, олефинов. При использовании базовых вариантов мономеров можно путем сополиконденсации получать миллионы тонн новых полимерных веществ. В настоящее время существуют различные методы, которые позволяют не только создавать вещества, но и влиять на молекулярно-массовое распределение полимеров.

Особенности процесса

Реакция поликонденсации - это процесс получения полимера при стадийном присоединении друг к другу молекул полифункциональных мономеров. При этом происходит выделение низкомолекулярных продуктов.

В качестве основы этого процесса можно рассматривать Благодаря выделению побочных продуктов, существуют отличия в элементарном составе полимера и исходного мономера.

Реакция поликонденсации аминокислоты связана с образованием молекул воды в ходе взаимодействия амино- и карбоксильной группы соседних молекул. В этом случае первая стадия реакции связана с образованием димеров, затем они превращаются в высокомолекулярные вещества.

Реакция поликонденсации, пример которой мы рассматриваем, отличается способностью образования на каждом этапе устойчивых веществ. Получаемые при взаимодействии аминокислот димеры, тримеры и полимеры можно выделять на всех промежуточных стадиях из реакционной смеси.

Итак, поликонденсация - это ступенчатый процесс. Для его протекания нужны молекулы мономеров, в составе которых от двух функциональных групп, способных взаимодействовать между собой.

Наличие функциональных групп позволяет олигомерам реагировать не только между собой, но и с мономерами. Подобное взаимодействие характеризует рост цепи полимера. Если у исходных мономеров по две функциональные группы, цепь растет в одном направлении, что приводит к образованию линейных молекул.

Поликонденсация - это реакция, результатом которой будут продукты, способные к последующему взаимодействию.

Классификация

Реакция поликонденсации, пример которой можно записать для многих органических веществ, дает представление о сложности протекающего взаимодействия.

В настоящее время подобные процессы принято классифицировать по определенным признакам:

  • тип связи между звеньями;
  • количество мономеров, принимающих участие в реакции;
  • механизм процесса.

Чем отличается реакция поликонденсации для разных классов органических веществ? Например, при полиамидировании в качестве исходных компонентов используют амины и карбоновые кислоты. В ходе ступенчатого взаимодействия между мономерами наблюдается образование полимера и молекул воды.

При этерификации исходными веществами являются спирт и карбоновая кислота, а условием получения сложного эфира является применение концентрированной серной кислоты в виде катализатора.

Как происходит поликонденсация? Примеры взаимодействий свидетельствуют о том, что в зависимости от числа мономеров можно выделить гомо- и гетерополиконденсацию. Например, при гомополиконденсации в качестве мономеров будут выступать вещества, имеющие сходные функциональные группы. В этом случае конденсация - это объединение исходных веществ с выделением воды. В качестве примера можно привести реакцию между несколькими аминокислотами, в результате которой будет образовываться полипептид (молекула белка).

Механизм процесса

В зависимости от особенностей протекания выделяют обратимую (равновесную) и необратимую (неравновесную) поликонденсацию. Подобное деление можно объяснить присутствием либо отсутствием деструктивных реакций, которые предполагают использование низкомолекулярных процессов, различной активности мономеров, а также допускают отличия в кинетических и термодинамических факторах. Для таких взаимодействий характерны невысокие константы равновесия, незначительная скорость процесса, длительность реакции, высокие температуры.

Во многих случаях для необратимых процессов характерно использование мономеров, отличающихся высокой реакционной способностью.

Высокие скорости процесса с применением мономера такого типа объясняют выбор низкотемпературной и межфазной поликонденсации в растворе. Необратимость процесса обуславливается невысокой температурой реакционной смеси, получением малоактивного химического вещества. В органической химии есть и такие варианты неравновесной поликонденсации, которые протекают в расплавах при высоких температурах. Примером такого процесса является процесс получения из диолов и дигалогенпроизводных полиэфиров.

Уравнение Карозерса

Глубина поликонденсации связана с тщательностью удаления из реакционной среды продуктов низкомолекулярного вида, которые мешают смещению процесса в сторону образования полимерного соединения.

Между глубиной процесса и степенью полимеризации есть зависимость, которая была объединена в математическую формулу. При реакции поликонденсации происходит исчезновение двух функциональных групп и одной молекулы мономера. Так как за время прохождения процесса происходит расходование какого-то количества молекул, глубина реакции связана с долей прореагировавших функциональных групп.

Чем больше будет взаимодействие, тем выше окажется степень полимеризации. Глубина процесса характеризуется продолжительностью реакции, величиной макромолекул. Чем отличается полимеризация от поликонденсации? В первую очередь характером протекания, а также скоростью процесса.

Причины прекращения процесса

Остановка роста цепи полимера вызывается различными причинами химического и физического характера. В качестве основных факторов, способствующих остановке процесса синтеза полимерного соединения, выделим:

  • повышение вязкости среды;
  • снижение скорости процесса диффузии;
  • уменьшение концентрации взаимодействующих веществ;
  • понижение температуры.

При повышении вязкости реакционной среды, а также понижении концентрации функциональных групп идет снижение вероятности столкновения молекул с последующей остановкой процесса роста.

Среди химических причин торможения поликонденсации лидируют:

  • изменение химического состава функциональных групп;
  • непропорциональное количество мономеров;
  • присутствие в системе низкомолекулярного продукта реакции;
  • равновесие между прямой и обратной реакциями.

Специфика кинетики

Реакции полимеризации и поликонденсации связаны с изменением скорости взаимодействия. Проанализируем основные кинетические процессы на примере процесса полиэтерификации.

Кислотный катализ протекает в две стадии. Сначала наблюдается протонирование кислоты - исходного реагента кислотой, выступающей в роли катализатора.

В ходе атаки реагентом спиртовой группы происходит распад интермедиата до продукта реакции. Для протекания прямой реакции важно своевременно удалять из реакционной смеси молекулы воды. Постепенно наблюдается уменьшение скорости процесса, вызываемое увеличением относительной молекулярной массы продукта поликонденсации.

В случае применения эквивалентных количеств функциональных групп на концах молекул взаимодействие может осуществляться длительный промежуток времени, пока не будет создана гигантская макромолекула.

Варианты проведения процессов

Полимеризация и поликонденсация - это важные процессы, используемые в современном химическом производстве. Выделяют несколько лабораторных и промышленных способов проведения процесса поликонденсации:

  • в растворе;
  • в расплаве;
  • в виде межфазного процесса;
  • в эмульсии;
  • на матрицах.

Реакции в расплавах необходимы для получения полиамидов и полиэфиров. В основном в расплаве равновесная поликонденсация протекает в две стадии. Сначала взаимодействие осуществляется в вакууме, что позволяет избежать термоокислительной деструкции мономеров, а также продуктов поликонденсации, гарантирует постепенное нагревание реакционной смеси, полное удаление низкомолекулярных продуктов.

Важные факты

Большая часть реакций проводится без использования катализатора. Вакуумирование расплава на второй стадии реакции сопровождается полной очисткой полимера, поэтому нет необходимости дополнительно проводить трудоемкий процесс переосаждения. Не допускается резкого повышения температуры на первом этапе взаимодействия, поскольку это может привести к частичному испарению мономеров, нарушению количественного соотношения взаимодействующих реагентов.

Полимеризация: особенности и примеры

Данный процесс характеризуется использованием одного исходного мономера. Например, путем такой реакции можно получать полиэтилен из исходного алкена.

Особенностью полимеризации является формирование крупных молекул полимера с заданным количеством повторяющихся структурных звеньев.

Заключение

Путем поликонденсации можно получить множество полимеров, востребованных в различных современных производствах. Например, в ходе этого процесса можно выделить фенолформальдегидные смолы. Взаимодействие формальдегида и фенола сопровождается образованием на первом этапе промежуточного соединения (фенолспирта). Затем наблюдается конденсация, приводящая к получению высокомолекулярного соединения - фенолформальдегидной смолы.

Полученный путем поликонденсации продукт нашел свое применение в создании множества современных материалов. Фенопласты, в основе которых есть данное соединение, обладают прекрасными теплоизоляционными характеристиками, поэтому востребованы в строительстве.

Полиэфиры, полиамиды, полученные путем поликонденсации, используют в медицине, технике, химическом производстве.

Реакции полимеризации

Полимеризация - реакция образования полимера без образования низкомолекулярных продуктов. В качестве мономера используется молекула, содержащая кратную связь. При полимеризации этилена роль бифункциональной структурной единицы играет двойная связь, которая под влиянием инициатора (например, органического пероксида перикиси бензолоила (C 6 H 5 COO) 2), легко переходит в радикальное состояние R ; присоединение радикала создает условия для роста цепи

Для реакции полимеризации характерны три стадии: инициирование, рост цепи и обрыв цепи:

обрыв цепи

полимер электротехническая медь

Этот тип полимеризации называется радикальным.

Полимеризация может инициироваться катионами или анионами (ионами). Ионная полимеризация включает те же стадии (инициирование, рост цепи, обрыв цепи). Инициаторами катионной полимеризации могут быть H+, неорганические апротонные кислоты SnCl 4 , AlCl 3 , металлоорганические соединения Al(C 2 H 5) 3 . Инициаторами анионной полимеризации обычно служат электронодонорные соединения (щелочные металлы, их алкоголяты и т. д.).

Катионная полимеризация:

Полимеризация может осуществляться между разными мономерами. Такие соединения называют сополимерами. В табл. 1 приведены примеры полимеров и сополимеров, получаемых реакцией полимеризации.

Таблица 1 Важнейшие полимеры и сополимеры

Реакции сополимеризации

Рассмотрим особенности процесса радикальной сополимеризации. В случае сополимеризации молекул А и В с образованием радикалов, центрированных на молекулах А или В растущей цепи, должны иметь место 4 стадии роста цепи:

Итак, в случае радикальной полимеризации мы имеем дело с распределением продуктов по молекулярным массам и многомаршрутный процесс с бесконечно большим числом маршрутов. Продукты реакции P i образуются в стадиях роста при передаче цепи на мономер.

Второй путь образования продуктов (полимерных молекул) - стадии обрыва цепи на X i и X j .

Реакции поликонденсации

В общем виде схема основной реакции поликонденсации-роста цепи - может быть представлена следующим, образом.:

(n и m-любое целое число, включая единицу, X и Y-исходные функциональные группы, А - низкомолекулярный продукт поликонденсации). При этом взаимодействие мономеров друг с другом или с образовавшимися олигомерами и последних между собой подчиняется практически одним и тем же законам.

Поскольку при поликонденсации мономеры исчерпываются уже при невысоких степенях завершенности реакции, рост цепи высокомолекулярного полимера происходит преим. в результате многократного соединения между собой олигомерных или полимерных молекул по концевым функциональным группам (принцип многократного удвоения), при этом число молекул в системе уменьшается (в этом ступенчатый характер поликонденсации). Уменьшается в ходе поликонденсации и количество исходных функциональных групп - реакционных (активных) центров, хотя в ряде случаев образующиеся при поликонденсации связи реагируют как между собой, так и с исходными реакционными центрами. Росту полимерной цепи при равновесной поликонденсации сопутствует обратная реакция полимера с выделяющимся низкомолекулярным продуктом, что ограничивает молекулярную массу полимера.

Поликонденсация сопровождается образованием полимера и низкомолекулярного соединения (H 2 O, HCl, NH 3 и т. п.). Мономеры должны содержать минимум две функциональные группы.

Типичная реакция поликонденсации лежит в основе получения фенолформальдегидных смол

Процессы полимеризации и поликонденсации имеют важное значение в промышленности органического синтеза. При их проведении получают высокомолекулярные вещества ─ полимеры ─ которые впоследствии используются для получения пластмасс, химических волокон, синтетических каучуков, лакокрасочной продукции, различных клеев и других синтетических материалов.

Полимеризацией называется реакция получения макромолекул, протекающая за счет разрыва кратных связей мономера, без выделения побочных продуктов.

nCH 2 = CH 2 → (──CH 2 ─CH 2 ──) n + Q

этилен полиэтилен

Исходными веществами для реакций полимеризации являются ненасыщенные соединения, имеющие двойные или тройные связи (этилен, ацетилен, стирол, винилхлорид, бутадиен и их производные) а также вещества, имеющие подвижные атомы, которые легко замешаются атомами других веществ. Возможность получения полимера обусловливается разрывом двойной связи, в результате чего молекула мономера реагирует с другими молекулами.

Процесс полимеризации проводят с использованием инициаторов или катализаторов. В присутствии инициаторов процесс протекает по радикальному механизму (через образование свободных радикалов), при использовании катализаторов ─ по ионному механизму (через образование ионов).

Поликонденсацией называется процесс образования полимеров, при котором взаимодействие молекул мономеров сопровождается выделением побочных низкомолекулярных соединений (воды, спирта, хлористого водорода). Например, лавсан получают при поликонденсации терефталевой кислоты и этиленгликоля:

nHOOC-C 6 H 4 -COOH + n HO-CH 2 -CH 2 -OH → (─OC-C 6 H 4 -CO-O-CH 2 -CH 2 -O─) n + 2n H 2 O + Q

Исходными веществами для реакций поликонденсации являются вещества, содержащие реакционноспособные (функциональные) группы (гидроксильные, карбоксильные аминогруппы и др.). Эти реакции, как правило, проводятся в присутствии инициаторов или катализаторов.

По химической сущности процессы полимеризации и поликонденсации отличаются друг от друга, однако условия их проведения одинаковы. Существуют три основных способа проведения процессов полимеризации (поликонденсации): блочный, эмульсионный и в растворе.

Блочная полимеризация перетекает в массе чистого мономера. Для проведения процесса требуются сравнительно невысокие температуры (от 200 до 370 0 С). С целью зарождения цепи процесс, как правило, проводят в присутствии инициатора.

Эмульсионной полимеризацией получают поливинилхлорид (латексная полимеризация), полиэтилен

низкого давления (суспензионная полимеризация), полистирол (латексный и суспензионный) и др. Реакторы-полимеризаторы для промышленного проведения латексной и суспензионной полимеризации чаще применяются емкостного типа, но могут быть и колонного типа.


Недостатки эмульсионной полимеризации ─ загрязнение полимера эмульгаторами, которые ухудшают свойства получаемого продукта.

Полимеризация в растворе проводится в среде растворителя, растворяющего мономер и полимер или только мономер. В первом случае продукт полимеризации представляет собой раствор полимера в виде лака, поэтому этот способ часто используют в лакокрасочной промышленности. Если полимер не растворяется, то по мере образования он вБлочный способ полимеризации используется в тех случаях, когда нужно получить полимер, не загрязненный примесями. В частности, таким способом получают полистирол, полиэтилен высокого давления, поликапролактам и др. Для осуществления блочной полимеризации при использовании непрерывных процессов применяют реакторы колонного типа и змеевиковые с обеспечением позонного температурного режима.

Эмульсионная полимеризация осуществляется в водной среде или в среде углеводородного растворителя, не способного растворять полимеризуемый мономер. Жидкий мономер распределяется в воде в виде мельчайших капелек, образуя эмульсию. Чтобы капельки мономера не сливались одна с другой, в воду добавляют различные эмульгаторы и эмульсию энергично перемешивают. В качестве эмульгаторов используют различные мыла, желатины, высшие спирты. Добавляемый эмульгатор обеспечивает лучшее диспергирование мономера, что обусловливает высокую скорость процесса. Кроме этого, эмульгатор снижает поверхностное натяжение на границе мономер─вода. Эмульсииыделяется из раствора в твердом виде (получается суспензия). Осадок полимера отделяют от растворителя фильтрацией, промывкой и сушкой.

При полимеризации в растворах получают более однородные полимеры (по сравнению с другими способами), но с меньшим молекулярным весом, так как цепи под действием молекул растворителя быстро обрываются.

Общая характеристика пожарной опасности процессов полимеризации и поликонденсации:

1. Пожарная опасность процессов полимеризации и поликонденсации связана, прежде всего, с тем, что в качестве мономеров используются легковоспламеняющиеся и горючие жидкости (стирол, хлоропрен, изопрен, изопентан), горючие газы (этилен, пропилен), в том числе и сжиженные (бутадиен, хлористый винил), горючие твердые вещества (капролактам, фенол, диметилтерефталат) и др.

Инициаторами процессов полимеризации являются органические перекиси и гидроперекиси (перекись бензоила, перекись водорода, гидроперекись изопропилбензола, персульфаты). В качестве катализаторов используют металлоорганические соединения (три- и диэтилалюминийхлорид, триизобутилалюминий) ─ вещества, обладающие большой химической активностью, самовоспламеняющиеся на воздухе, при контакте с водой и веществами, содержащими группу ОН. Катализаторами бывают и щелочные металлы (Nа, Li), самовоспламеняющиеся при контакте с водой.

Для нагрева в некоторых случаях используют органические теплоносители.

2. Процессы полимеризации очень чувствительны к повышенным температурам. Повышение температурного режима в результате увеличения скорости химической реакции полимеризации приводит к росту давления и авариям. Следовательно, при работе реакторов необходимо поддержание постоянного температурного режима.

3. При проведении процессов полимеризации и поликонденсации технологические коммуникации могут засоряться полимерными отложениями, что зачастую приводит к значительному повышению давления в полимеризаторе.

Коммуникации, продолжительное время соприкасающиеся с мономером, а также поверхность предохранительных клапанов и вентилей ручного стравливания с целью защиты от отложений полимеров необходимо смазывать ингибитором процесса полимеризации.

4. Повышенное давление в реакторах может наблюдаться при нарушении нормального отвода побочного продукта, образующегося в процессе поликонденсации.

5. При полимеризации в присутствии металлоорганических катализаторов нарушение температурного режима и давления может наблюдаться в случае попадания в реактор влаги или кислорода. Поэтому исходные вещества и азот предварительно осушаются. Кроме того, осуществляют контроль за содержанием свободного кислорода в сырье и азоте, которое не должно превышать норму, установленную технологическим регламентом.

6. Внутренняя поверхность реакторов и соединенных с ними трубопроводов может подвергаться химической коррозии.

7. Использование мешалок связано с возможность выхода горючих веществ наружу через неплотности. Поэтому возникает необходимость обеспечения надежной герметичности мест выхода из аппаратов валов мешалок и устройства местных отсосов.

8. В периоды вывода установок из эксплуатации возможно самовозгорание отложений термополимеров.

9. Применяемые в процессах полимеризации углеводородные растворители и многие мономеры являются хорошими диэлектриками, при движении которых образуется статическое электричество. Это вызывает необходимость тщательного заземления аппаратов и трубопроводов.

10. Источники зажигания могут возникнуть при неисправности и несоответствии электроприводов к мешалкам, а также электроподогревателей реакционной среды.

Полиамиды . Рассмотрим процесс образования полиамидов, представителями которых являются многочисленные разновидности найлона. Некоторые из них образуются конденсацией диаминов с хлоропроизводными дикарбоновых кислот. Например, найлон-6,6 образуется при нагревании гексан-1,6-диоилдихлорида (дихлорангидрида адипиновой кислоты) с гексан-1,6-диамином:

Каждый мономер содержит по две функциональные группы. Процесс сопровождается выделением низкомолекулярного соединения – НС1. Состав элементарного звена молекулы полимера не соответствует составу молекулы исходных мономеров. Найлон-6,6 используется либо как волокно, либо как пластик (щетки, изготовление шестерен и деталей в механизмах и др.).

Полиэфиры также представляют собой продукты поликонденсации. Они используются как синтетические волокна. Например, "терилен" ("лавсан", "дакрон") образуется при нагревании 1,2 – этандиола (этиленгликоля) с терефталевой кислотой. Оба этих мономера являются бифункциональными. Первый из них представляет собой двухатомной спирт, а второй – дикарбоновую кислоту:

Фенолформальдегидные смолы получают реакцией поликонденсации фенола С6Н5ОН и формальдегида СН2О. В зависимости от соотношения компонентов и условий процесса поликонденсации образуются новолачные или резольные смолы.

Новолачные смолы образуются при небольшом избытке фенола с катализатором – соляной кислотой при нагревании. Сначала получается преимущественно о-оксибензиловый спирт, а затем в результате его поликонденсации – новолачная смола:

Резольные смолы получают при небольшом избытке формальдегида с щелочным катализатором:

При нагревании резольных смол до 150–170°С происходит сшивание цепных молекул посредством СН2-мостиков и возникает структура резита:

Отверждение новолачных смол можно провести путем добавления отвердителя – уротропина (CH2)6N4 и нагревания.

Примером ступенчатой полимеризации, проходящей без выделения низкомолекулярных соединений, является получение полиуретанов.

Схема реакции получения полиуретанов линейного строения:

Карбамидные – мочевиноформальдегидные и меламиноформальдегидные смолы.

Мочевина также способна к реакции конденсации с формальдегидом, в результате которой получают мочевиноформальдегидные смолы. Реакция протекает аналогично образованию фенолформальдегидных смол. При этом получаются моно- и ди- метилольные производные, которые далее, реагируя с мочевиной, образуют конечную структуру смолы:

Итоговая схема следующая:

Атомы водорода имидной группы линейного полимера могут далее замещаться метилольными группировками в присутствии избытка формальдегида:

Структура конечного продукта, как и при конденсации фенолформальдегидных смол, зависит от соотношения мочевины и формальдегида в исходной смеси. Так при нагреве линейного полимера в присутствии избытка формальдегида образуется трехмерный полимер:

Меланин и формальдегид также могут реагировать, образуя метилольные производные меламина:

Конденсация метилольных производных меламина с большим количеством меламина приводит к получению линейного полимера. Этот полимер при дальнейшей конденсации с избытком формальдегида образует трехмерный сетчатый полимер, нерастворимый во многих растворителях:

Несшитые мочевиноформальдегидные и меламиноформальдегидные смолы водорастворимы и их используют как связующие, например в производстве фанеры.

Меламиновые смолы используют в производстве древесностружечных и древесноволокнистых плит.

Меламиноформальдегидные смолы обладают более высокой термо- и влагостойкостью в сравнении с мочевиноформальдегидными смолами

Эпоксидные полимеры

Эпоксидные полимеры. – это простые полиэфиры. Один из эпоксидных полимеров (или эпоксидных смол) получают из этилхлоргидрина и бисфенола А. Реакцию проводят в избытке эпихлоргидрина

Вместо бисфенола А могут использоваться и гликоли, глицерин, резорцин и их производные.

Полученные эпоксидные смолы представляют собой высоковязкие жидкости или твердые тела с высокими температурами плавления. Эпоксидные смолы могут далее отверждаться добавками аминов, полисульфидов, полиамидов. Эпоксидные смолы находят весьма широкое и разнообразное применение благодаря своей химической устойчивости и хорошей адгезии. Эпоксидные смолы являются конструкционными клеями. После полного отверждения эпоксидные смолы – это прочные материалы, что позволяет их использовать для покрытия полов в промышленных зданиях в качестве герметизирующих композиций.

error: