Касательная прямая. Что такое касательная к окружности? Свойства касательной к окружности

Чаще всего именно геометрические задачи вызывают затруднения у абитуриентов, выпускников, участников математических олимпиад. Если посмотреть статистику ЕГЭ 2010 года, то видно, что к геометрической задаче С4 приступило около 12% участников, а получило полный балл только 0,2% участников, а в целом задача оказалась самой сложной из всех предложенных.

Очевидно, что чем раньше мы предложим школьникам красивые или неожиданные по способу решения задачи, тем больше вероятность заинтересовать и увлечь всерьёз и надолго. Но, как же трудно найти интересные и сложные задачи на уровне 7 класса, когда только начинается систематическое изучение геометрии. Что можно предложить интересующемуся математикой школьнику, знающему только признаки равенства треугольников, свойства смежных и вертикальных углов? Однако, можно ввести понятие касательной к окружности, как прямой, имеющей с окружностью одну общую точку; принять, что радиус, проведённый в точку касания, перпендикулярен касательной. Конечно, стоит рассмотреть все возможные случаи расположения двух окружностей и общих касательных к ним, которых можно провести от нуля до четырёх. Доказав ниже предложенные теоремы, можно значительно расширить набор задач для семиклассников. При этом попутно доказать важные или просто интересные и занимательные факты. Причём, поскольку многие утверждения не входят в школьный учебник, то обсуждать их можно и на занятиях кружка и с выпускниками при повторении планиметрии. Актуальными эти факты оказались в прошлом учебном году. Так как многие диагностические работы и сама работа ЕГЭ содержали задачу, для решения которой необходимо было использовать доказываемое ниже свойство отрезка касательной.

Т 1 Отрезки касательных к окружности, проведённые из
одной точки равны (рис. 1)

Вот именно с теоремой можно сначала познакомить семиклассников.
В процессе доказательства использовали признак равенства прямоугольных треугольников, сделали вывод о том, что центр окружности лежит на биссектрисе угла ВСА .
Попутно вспомнили, что биссектриса угла есть геометрическое место точек внутренней области угла, равноудалённых от его сторон. На этих доступных даже только начинающим изучать геометрию фактах основывается решение уже далеко нетривиальной задачи.

1. Биссектрисы углов А , В и С выпуклого четырёхугольника АВСD пересекаются в одной точке. Лучи АВ и DC пересекаются в точке Е , а лучи
ВС и АD в точке F . Докажите, что у невыпуклого четырёхугольника AECF суммы длин противоположных сторон равны.

Решение (рис. 2). Пусть О – точка пересечения данных биссектрис. Тогда О равноудалена от всех сторон четырёхугольника АВСD , то есть
является центром окружности вписанной в четырёхугольник. По теореме 1 верны равенства: AR = AK , ER = EP , FT = FK . Почленно сложим левые и правые части, получим верное равенство:

(AR + ER ) + FT = (AK +FK ) + EP ; AE + (FC + CT ) = AF + (ЕC + PC ). Так как СТ = РС , то АЕ + FC = AF + ЕC , что и требовалось доказать.

Рассмотрим необычную по формулировке задачу, для решения которой достаточно знание теоремы 1 .

2. Существует ли n -угольник, стороны которого последовательно 1, 2, 3, …, n , в который можно вписать окружность?

Решение. Допустим, такой n -угольник существует. А 1 А 2 =1, …, А n-1 А n = n – 1, А n А 1 = n . B 1 , …, B n – соответствующие точки касания. Тогда по теореме 1 A 1 B 1 = A 1 B n < 1, n – 1 < A n B n < n. По свойству отрезков касательных A n B n = A n B n-1 . Но, A n B n-1 < A n-1 А n = n – 1. Противоречие. Следовательно, нет n -угольника, удовлетворяющего условию задачи.


Т 2 Суммы противолежащих сторон четырёхугольника, описанного около
окружности, равны (рис. 3)

Школьники, как правило, легко доказывают это свойство описанного четырёхугольника. После доказательства теоремы 1 , оно является тренировочным упражнением. Можно обобщить этот факт – суммы сторон описанного чётноугольника, взятых через одну, равны. Например, для шестиугольника ABCDEF верно: AB + CD + EF = BC + DE + FА.

3. МГУ. В четырёхугольнике ABCD расположены две окружности: первая окружность касается сторон AB, BC и AD , а вторая – сторон BC, CD и AD . На сторонах BC и AD взяты точки E и F соответственно так, отрезок EF касается обеих окружностей, а периметр четырёхугольника ABEF на 2p больше периметра четырёхугольника ECDF . Найти AB , если CD = a .

Решение (рис. 1) . Так как четырёхугольники ABEF и ECDF вписанные, то по теореме 2 Р ABEF = 2(AB + EF) и Р ECDF = 2(CD + EF), по условию

Р ABEF – Р ECDF = 2(AB + EF) – 2(CD + EF) = 2p. AB – CD = p. АВ = а + р.

Опорная задача 1. Прямые АВ и АС – касательные в точках В и С к окружности с центром в точке О. Через произвольную точку Х дуги ВС
проведена касательная к окружности, пересекающая отрезки АВ и АС в точках М и Р соответственно. Докажите, что периметр треугольника АМР и величина угла МОР не зависят от выбора точки Х.

Решение (рис. 5). По теореме 1 МВ = МХ и РС = РХ. Поэтому периметр треугольника АМР равен сумме отрезков АВ и АС. Или удвоенной касательной, проведённой к вневписанной окружности для треугольника АМР . Величина угла МОР измеряется половиной величины угла ВОС , который не зависит от выбора точки Х .

Опорная задача 2а. В треугольник со сторонами а, b и c вписана окружность, касающаяся стороны АВ и точке К. Найти длину отрезка АК.

Решение (рис. 6). Способ первый (алгебраический). Пусть АК = АN = x, тогда BK = BM = c – x, CM = CN = a – c + x. АС = АN + NC, тогда можем составить уравнение относительно х: b = x + (a – c + x). Откуда .

Способ второй (геометрический). Обратимся к схеме. Отрезки равных касательных, взятые по одному, в сумме дают полупериметр
треугольника. Красный и зелёный составляют сторону а. Тогда интересующий нас отрезок х = р – а. Безусловно, полученные результаты совпадают.

Опорная задача 2б. Найти длину отрезка касательной АК, если К – точка касания вневписанной окружности со стороной АВ.Решение (рис. 7). АК = АM = x, тогда BK = BN = c – x, CM = CN. Имеем уравнение b + x = a + (c – x). Откуда . З аметим, что из опорной задачи 1 следует, что СМ = р Δ АВС. b + x = p; х = р – b. Полученные формулы имеют применение в следующих задачах.

4. Найдите радиус окружности, вписанной в прямоугольный треугольник с катетами а, b и гипотенузой с. Решение (рис. 8). Т ак как OMCN – квадрат, то радиус вписанной окружности равен отрезку касательной CN. .

5. Докажите, что точки касания вписанной и вневписанной окружности со стороной треугольника симметричны относительно середины этой стороны.

Решение (рис. 9). Заметим, АК – отрезок касательной вневписанной окружности для треугольника АВС. По формуле (2) . ВМ – отрезок касательной вписанной окружности для треугольника АВС. По формуле (1) . АК = ВМ, а это и означает, что точки К и М равноудалены от середины стороны АВ, что и требовалось доказать.

6. К двум окружностям проведены две общие внешние касательные и одна внутренняя. Внутренняя касательная пересекает внешние в точках А, В и касается окружностей в точках А 1 и В 1 . Докажите, что АА 1 = ВВ 1 .

Решение (рис. 10). Стоп… Да что тут решать? Это же просто другая формулировка предыдущей задачи. Очевидно, что одна из окружностей является вписанной, а другая вневписанной для некоего треугольника АВС. А отрезки АА 1 и ВВ 1 соответствуют отрезкам АК и ВМ задачи 5. Примечательно, что задача, предлагавшаяся на Всероссийской олимпиаде школьников по математике, решается столь очевидным образом.

7. Стороны пятиугольника в порядке обхода равны 5, 6, 10, 7, 8. Доказать, что в этот пятиугольник нельзя вписать окружность.

Решение (рис. 11) . Предположим, что в пятиугольник АВСDE можно вписать окружность. Причём стороны AB , BC , CD , DE и ЕA равны соответственно 5, 6, 10, 7 и 8. Отметим последовательно точки касания – F , G , H , M и N . Пусть длина отрезка AF равна х .

Тогда BF = FD AF = 5 – x = BG . GC = BC BG = = 6 – (5 – x ) = 1 + x = CH . И так далее: HD = DM = 9 – x ; ME = EN = x – 2, AN = 10 – х .

Но, AF = AN . То есть 10 – х = х ; х = 5. Однако, отрезок касательной AF не может равняться стороне АВ . Полученное противоречие и доказывает, что в данный пятиугольник нельзя вписать окружность.

8. В шестиугольник вписана окружность, его стороны в порядке обхода равны 1, 2, 3, 4, 5. Найти длину шестой стороны.

Решение. Конечно, можно отрезок касательной обозначить за х , как и в предыдущей задаче, составить уравнение и получить ответ. Но, гораздо эффективнее и эффектнее использовать примечание к теореме 2 : суммы сторон описанного шестиугольника, взятых через одну, равны.

Тогда 1 + 3 + 5 = 2 + 4 + х , где х – неизвестная шестая сторона, х = 3.

9. МГУ, 2003 г . химический факультет, № 6(6) . В пятиугольник АВСDE вписана окружность, Р – точка касания этой окружности со стороной ВС . Найдите длину отрезка ВР , если известно, что длины всех сторон пятиугольника есть целые числа, АВ = 1, СD = 3.

Решение (рис.12) . Так как длины всех сторон являются целыми числами, то равны дробные части длин отрезков BT , BP , DM , DN , AK и AT . Имеем, АТ + ТВ = 1, и дробные части длин отрезков AT и TB равны. Это возможно только тогда, когда АТ + ТВ = 0,5. По теореме 1 ВТ + ВР .
Значит, ВР = 0,5. Заметим, что условие СD = 3 оказалось невостребованным. Очевидно, авторы задачи предполагали какое-то другое решение. Ответ: 0,5.

10. В четырёхугольнике ABCD AD = DC, AB = 3, BC = 5. Окружности, вписанные в треугольники ABD и CBD касаются отрезка BD в точках M и N соответственно. Найти длину отрезка MN.

Решение (рис. 13). MN = DN – DM. По формуле (1) для треугольников DBA и DBС соответственно, имеем:

11. В четырёхугольник ABCD можно вписать окружность. Окружности, вписанные в треугольники ABD и CBD имеют радиусы R и r соответственно. Найти расстояние между центрами этих окружностей.

Решение (рис. 13). Так как по условию четырёхугольник ABCD вписанный, по теореме 2 имеем: AB + DC = AD + BC. Воспользуемся идеей решения предыдущей задачи. . Это означает, что точки касания окружностей с отрезком DM совпадают. Расстояние между центрами окружностей равно сумме радиусов. Ответ: R + r.

Фактически доказано, что условие – в четырёхугольник ABCD можно вписать окружность, равносильно условию – в выпуклом четырехугольнике ABCD окружности, вписанные в треугольники ABC и ADC касаются друг друга. Верно обратное.

Доказать эти два взаимно-обратных утверждения предлагается в следующей задаче, которую можно считать обобщением данной.

12. В выпуклом четырехугольнике ABCD (рис. 14 ) окружности, вписанные в треугольники ABC и ADC касаются друг друга. Докажите, что окружности, вписанные в треугольники ABD и BDC также касаются друг друга.

13. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D так, что окружности, вписанные в треугольники АВD и ACD касаются отрезка AD в одной точке. Найти длину отрезка BD .

Решение (рис. 15). Применим формулу (1) для треугольников ADC и ADB , вычислив DM двумя

Оказывается, D – точка касания со стороной ВС окружности, вписанной в треугольник АВС . Верно обратное: если вершину треугольника соединить с точкой касания вписанной окружности на противоположной стороне, то окружности, вписанные в получившиеся треугольники, касаются друг друга.

14. Центры О 1 , О 2 и О 3 трёх непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек О 1 , О 2 , О 3 проведены касательные к данным окружностям так, как показано на рисунке.

Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.

Решение (рис. 16). Важно понять, как использовать тот факт, что заданные окружности имеют одинаковые радиусы. Заметим, что отрезки ВR и равны, что следует из равенства прямоугольных треугольников О 1 ВR и O 2 BM . Аналогично DL = DP , FN = FK . Почленно складываем равенства, затем вычитаем из полученных сумм одинаковые отрезки касательных, проведенных из вершин А , С , и Е шестиугольника ABCDEF : АR и AK , CL и CM , EN и EP . Получаем требуемое.

Вот пример задачи по стереометрии, предлагавшейся на XII Международном математическом турнире старшеклассников “Кубок памяти А. Н. Колмогорова”.

16. Дана пятиугольная пирамида SA 1 A 2 A 3 A 4 A 5 . Существует сфера w , которая касается всех ребер пирамиды и другая сфера w 1 , которая касается всех сторон основания A 1 A 2 A 3 A 4 A 5 и продолжений боковых рёбер SA 1 , SA 2 , SA 3 , SA 4 , SA 5 за вершины основания. Докажите, что вершина пирамиды равноудалена от вершин основания. (Берлов С. Л., Карпов Д. В.)

Решение. Пересечение сферы w с плоскостью любой из граней сферы – это вписанная окружность грани. Пересечение сферы w 1 с каждой из граней SA i A i +1 – вневписанная окружность, касающаяся стороны A i A i +1 треугольника SA i A i +1 и продолжений двух других сторон. Обозначим точку касания w 1 с продолжением стороны SA i через B i . По опорной задаче 1 имеем, что SB i = SB i +1 = p SAiAi +1 , следовательно, периметры всех боковых граней пирамиды равны. Обозначим точку касания w со стороной SA i через С i . Тогда SC 1 = SC 2 = SC 3 = SC 4 = SC 5 = s ,
так как отрезки касательных равны. Пусть C i A i = a i . Тогда p SAiAi +1 = s+a i +a i +1 , и из равенства периметров следует, что a 1 = a 3 = a 5 = a 2 = a 4 , откуда SA 1 = SA 2 = SA 3 = SA 4 = SA 5 .

17. ЕГЭ. Диагностическая работа 8.12.2009 г, С–4. Дана трапеция ABCD , основания которой BC = 44, AD = 100, AB = CD = 35. Окружность, касающаяся прямых AD и AC , касается стороны CD в точке K . Найдите длину отрезка CK .ВDС и ВDА , касаются стороны ВD в точках Е и F . Найдите длину отрезка EF .

Решение. Возможны два случая (рис. 20 и рис. 21). По формуле (1) найдём длины отрезков DE и DF .

В первом случае AD = 0,1АС , СD = 0,9AC . Во втором – AD = 0,125АС , СD = 1,125AC . Подставляем данные и получаем ответ: 4,6 или 5,5.

Задачи для самостоятельного решения/

1. Периметр равнобедренной трапеции, описанной около окружности равен 2р. Найдите проекцию диагонали трапеции на большее основание. (1/2р)

2. Открытый банк задач ЕГЭ по математике. В4. К окружности, вписанной в треугольник ABC (рис. 22), проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. (24)

3. В треугольник АВС вписана окружность. MN – касательная к окружности, MÎ АС, NÎ ВС, ВС = 13, АС = 14, АВ = 15. Найдите периметр треугольника MNC. (12)

4. К окружности, вписанной в квадрат со стороной а, проведена касательная, пересекающая две его стороны. Найдите периметр отсечённого треугольника. (а)

5. Окружность вписана в пятиугольник со сторонами а , d , c , d и e . Найдите отрезки, на которые точка касания делит сторону, равную а .

6. В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника. (16)

7. CD – медиана треугольника ABC . Окружности, вписанные в треугольники ACD и BCD , касаются отрезка CD в точках M и N . Найдите MN , если АС ВС = 2. (1)

8. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D . К окружностям, вписанным в треугольники АВD и ACD , проведена общая касательная, пересекающая AD в точке М . Найти длину отрезка АМ . (Длина АМ не зависит от положения точки D и
равна ½ (c + b – a ))

9. В прямоугольный треугольник вписана окружность радиуса а . Радиус окружности, касающейся гипотенузы и продолжений катетов, равен R. Найдите длину гипотенузы. (R – a )

10. В треугольнике АВС известны длины сторон: АВ = с , АС = b , ВС = а . Вписанная в треугольник окружность касается стороны АВ в точке С 1 . Вневписанная окружность касается продолжения стороны АВ за точку А в точке С 2 . Определите длину отрезка С 1 С 2 . (b )

11. Найдите длины сторон треугольника, разделённых точкой касания вписанной окружности радиуса 3 см на отрезки 4 см и 3 см. (7, 24 и 25 см в прямоугольном треугольнике)

12. Соросовская олимпиада 1996 г, 2 тур, 11 класс . Дан треугольник АВС , на сторонах которого отмечены точки А 1 , В 1 , С 1 . Радиусы окружностей вписанных в треугольники АС 1 В 1 , ВС 1 А 1 , СА 1 В 1 равны по r . Радиус окружности, вписанной в треугольник А 1 В 1 С 1 равен R . Найти радиус окружности, вписанной в треугольник АВС . (R + r ).

Задачи 4–8 взяты из задачника Гордина Р. К. “Геометрия. Планиметрия.” Москва. Издательство МЦНМО. 2004.

Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

Определение 1

Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.

На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

Определение 2

Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .

Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .

  • Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
  • Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 < α < π 2 или 0 ° < α < 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
  • Если α = π 2 , тогда расположение прямой перпендикулярно о х. Равенство задается при помощи равенства x = c со значением с, являющимся действительным числом.
  • Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 < α < π или 90 ° < α < 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.
Определение 3

Секущей называют прямую, которая проходит через 2 точки функции f (x) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

По рисунку видно, что А В является секущей, а f (x) – черная кривая, α - красная дуга, означающая угол наклона секущей.

Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.

Определение 4

Получаем формулу для нахождения секущей вида:

k = t g α = B C A C = f (x B) - f x A x B - x A , где абсциссами точек А и В являются значения x A , x B , а f (x A) , f (x B) - это значения функции в этих точках.

Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f (x B) - f (x A) x B - x A или k = f (x A) - f (x B) x A - x B , причем уравнение необходимо записать как y = f (x B) - f (x A) x B - x A · x - x A + f (x A) или
y = f (x A) - f (x B) x A - x B · x - x B + f (x B) .

Секущая делит график визуально на 3 части: слева от точки А, от А до В, справа от В. На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

По определению видно, что прямая и ее секущая в данном случае совпадают.

Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

Определение 5

Касательная к графику функции f (x) в точке x 0 ; f (x 0) называется прямая, проходящая через заданную точку x 0 ; f (x 0) , с наличием отрезка, который имеет множество значений х, близких к x 0 .

Пример 1

Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами (1 ; 2) . Для наглядности, необходимо рассмотреть графики с приближенными к (1 ; 2) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

Очевидно, что y = 2 x сливается с прямой у = х + 1 .

Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А. Для наглядности приведем рисунок.

Секущая А В, обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .

Определение 6

Касательной к графику функции y = f (x) в точке А считается предельное положение секущей А В при В стремящейся к А, то есть B → A .

Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

Перейдем к рассмотрению секущей А В для функции f (x) , где А и В с координатами x 0 , f (x 0) и x 0 + ∆ x , f (x 0 + ∆ x) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f (x) = f (x 0 + ∆ x) - f (∆ x) . Для наглядности приведем в пример рисунок.

Рассмотрим полученный прямоугольный треугольник А В С. Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f (x) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f (x 0) = lim ∆ x → 0 ∆ y ∆ x .

Отсюда следует, что f " (x 0) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.

То есть получаем, что f ’ (x) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 (x 0) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f " (x 0) .

Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.

Уравнение касательной к графику функции y = f (x) в точке x 0 , f 0 (x 0) принимает вид y = f " (x 0) · x - x 0 + f (x 0) .

Имеется в виду, что конечным значением производной f " (x 0) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f " (x) = ∞ и lim x → x 0 - 0 f " (x) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f " (x) ≠ lim x → x 0 - 0 f " (x) .

Расположение касательной зависит от значения ее углового коэффициента k x = f " (x 0) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у - k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x < 0 .

Пример 2

Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 - 6 - 3 3 x - 17 - 3 3 в точке с координатами (1 ; 3) с определением угла наклона.

Решение

По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, (1 ; 3) является точкой касания, тогда x 0 = - 1 , f (x 0) = - 3 .

Необходимо найти производную в точке со значением - 1 . Получаем, что

y " = e x + 1 + x 3 3 - 6 - 3 3 x - 17 - 3 3 " = = e x + 1 " + x 3 3 " - 6 - 3 3 x " - 17 - 3 3 " = e x + 1 + x 2 - 6 - 3 3 y " (x 0) = y " (- 1) = e - 1 + 1 + - 1 2 - 6 - 3 3 = 3 3

Значение f ’ (x) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.

Тогда k x = t g α x = y " (x 0) = 3 3

Отсюда следует, что α x = a r c t g 3 3 = π 6

Ответ: уравнение касательной приобретает вид

y = f " (x 0) · x - x 0 + f (x 0) y = 3 3 (x + 1) - 3 y = 3 3 x - 9 - 3 3

Для наглядности приведем пример в графической иллюстрации.

Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.

Пример 3

Выяснить наличие существования касательной к графику заданной функции
y = 3 · x - 1 5 + 1 в точке с координатами (1 ; 1) . Составить уравнение и определить угол наклона.

Решение

По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

Перейдем к нахождению производной

y " = 3 · x - 1 5 + 1 " = 3 · 1 5 · (x - 1) 1 5 - 1 = 3 5 · 1 (x - 1) 4 5

Если x 0 = 1 , тогда f ’ (x) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 (x - 1) 4 5 = 3 5 · 1 (+ 0) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 - 0 3 5 · 1 (x - 1) 4 5 = 3 5 · 1 (- 0) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке (1 ; 1) .

Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .

Для наглядности изобразим графически.

Пример 4

Найти точки графика функции y = 1 15 x + 2 3 - 4 5 x 2 - 16 5 x - 26 5 + 3 x + 2 , где

  1. Касательная не существует;
  2. Касательная располагается параллельно о х;
  3. Касательная параллельна прямой y = 8 5 x + 4 .

Решение

Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ - ∞ ; 2 и [ - 2 ; + ∞) . Получаем, что

y = - 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ - ∞ ; - 2 1 15 x 3 - 6 x 2 + 9 x + 12 , x ∈ [ - 2 ; + ∞)

Необходимо продифференцировать функцию. Имеем, что

y " = - 1 15 x 3 + 18 x 2 + 105 x + 176 " , x ∈ - ∞ ; - 2 1 15 x 3 - 6 x 2 + 9 x + 12 " , x ∈ [ - 2 ; + ∞) ⇔ y " = - 1 5 (x 2 + 12 x + 35) , x ∈ - ∞ ; - 2 1 5 x 2 - 4 x + 3 , x ∈ [ - 2 ; + ∞)

Когда х = - 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:

lim x → - 2 - 0 y " (x) = lim x → - 2 - 0 - 1 5 (x 2 + 12 x + 35 = - 1 5 (- 2) 2 + 12 (- 2) + 35 = - 3 lim x → - 2 + 0 y " (x) = lim x → - 2 + 0 1 5 (x 2 - 4 x + 3) = 1 5 - 2 2 - 4 - 2 + 3 = 3

Вычисляем значение функции в точке х = - 2 , где получаем, что

  1. y (- 2) = 1 15 - 2 + 2 3 - 4 5 (- 2) 2 - 16 5 (- 2) - 26 5 + 3 - 2 + 2 = - 2 , то есть касательная в точке (- 2 ; - 2) не будет существовать.
  2. Касательная параллельна о х, когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f " (x 0) . То есть необходимо найти значения таких х, когда производная функции обращает ее в ноль. То есть значения f ’ (x) и будут являться точками касания, где касательная является параллельной о х.

Когда x ∈ - ∞ ; - 2 , тогда - 1 5 (x 2 + 12 x + 35) = 0 , а при x ∈ (- 2 ; + ∞) получаем 1 5 (x 2 - 4 x + 3) = 0 .

1 5 (x 2 + 12 x + 35) = 0 D = 12 2 - 4 · 35 = 144 - 140 = 4 x 1 = - 12 + 4 2 = - 5 ∈ - ∞ ; - 2 x 2 = - 12 - 4 2 = - 7 ∈ - ∞ ; - 2 1 5 (x 2 - 4 x + 3) = 0 D = 4 2 - 4 · 3 = 4 x 3 = 4 - 4 2 = 1 ∈ - 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ - 2 ; + ∞

Вычисляем соответствующие значения функции

y 1 = y - 5 = 1 15 - 5 + 2 3 - 4 5 - 5 2 - 16 5 - 5 - 26 5 + 3 - 5 + 2 = 8 5 y 2 = y (- 7) = 1 15 - 7 + 2 3 - 4 5 (- 7) 2 - 16 5 - 7 - 26 5 + 3 - 7 + 2 = 4 3 y 3 = y (1) = 1 15 1 + 2 3 - 4 5 · 1 2 - 16 5 · 1 - 26 5 + 3 1 + 2 = 8 5 y 4 = y (3) = 1 15 3 + 2 3 - 4 5 · 3 2 - 16 5 · 3 - 26 5 + 3 3 + 2 = 4 3

Отсюда - 5 ; 8 5 , - 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.

Рассмотрим графическое изображение решения.

Черная линия – график функции, красные точки – точки касания.

  1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y " (x) = 8 5 . Тогда, если x ∈ - ∞ ; - 2 , получаем, что - 1 5 (x 2 + 12 x + 35) = 8 5 , а если x ∈ (- 2 ; + ∞) , тогда 1 5 (x 2 - 4 x + 3) = 8 5 .

Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 - 4 · 43 = - 28 < 0

Другое уравнение имеет два действительных корня, тогда

1 5 (x 2 - 4 x + 3) = 8 5 x 2 - 4 x - 5 = 0 D = 4 2 - 4 · (- 5) = 36 x 1 = 4 - 36 2 = - 1 ∈ - 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ - 2 ; + ∞

Перейдем к нахождению значений функции. Получаем, что

y 1 = y (- 1) = 1 15 - 1 + 2 3 - 4 5 (- 1) 2 - 16 5 (- 1) - 26 5 + 3 - 1 + 2 = 4 15 y 2 = y (5) = 1 15 5 + 2 3 - 4 5 · 5 2 - 16 5 · 5 - 26 5 + 3 5 + 2 = 8 3

Точки со значениями - 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .

Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках - 1 ; 4 15 , 5 ; 8 3 .

Возможно существование бесконечного количества касательных для заданных функций.

Пример 5

Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x - π 4 - 1 3 , которые располагаются перпендикулярно прямой y = - 2 x + 1 2 .

Решение

Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется - 1 , то есть записывается как k x · k ⊥ = - 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = - 2 , тогда k x = - 1 k ⊥ = - 1 - 2 = 1 2 .

Теперь необходимо найти координаты точек касания. Нужно найти х, после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
x 0 получаем, что k x = y " (x 0) . Из данного равенства найдем значения х для точек касания.

Получаем, что

y " (x 0) = 3 cos 3 2 x 0 - π 4 - 1 3 " = 3 · - sin 3 2 x 0 - π 4 · 3 2 x 0 - π 4 " = = - 3 · sin 3 2 x 0 - π 4 · 3 2 = - 9 2 · sin 3 2 x 0 - π 4 ⇒ k x = y " (x 0) ⇔ - 9 2 · sin 3 2 x 0 - π 4 = 1 2 ⇒ sin 3 2 x 0 - π 4 = - 1 9

Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

3 2 x 0 - π 4 = a r c sin - 1 9 + 2 πk или 3 2 x 0 - π 4 = π - a r c sin - 1 9 + 2 πk

3 2 x 0 - π 4 = - a r c sin 1 9 + 2 πk или 3 2 x 0 - π 4 = π + a r c sin 1 9 + 2 πk

x 0 = 2 3 π 4 - a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z

Z - множество целых чисел.

Найдены х точек касания. Теперь необходимо перейти к поиску значений у:

y 0 = 3 cos 3 2 x 0 - π 4 - 1 3

y 0 = 3 · 1 - sin 2 3 2 x 0 - π 4 - 1 3 или y 0 = 3 · - 1 - sin 2 3 2 x 0 - π 4 - 1 3

y 0 = 3 · 1 - - 1 9 2 - 1 3 или y 0 = 3 · - 1 - - 1 9 2 - 1 3

y 0 = 4 5 - 1 3 или y 0 = - 4 5 + 1 3

Отсюда получаем, что 2 3 π 4 - a r c sin 1 9 + 2 πk ; 4 5 - 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; - 4 5 + 1 3 являются точками касания.

Ответ: необходимы уравнения запишутся как

y = 1 2 x - 2 3 π 4 - a r c sin 1 9 + 2 πk + 4 5 - 1 3 , y = 1 2 x - 2 3 5 π 4 + a r c sin 1 9 + 2 πk - 4 5 + 1 3 , k ∈ Z

Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

Рисунок показывает, что расположение функции идет на промежутке [ - 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = - 2 x + 1 2 . Красные точки – это точки касания.

Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

Касательная к окружности

Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x - x c e n t e r 2 + y - y c e n t e r 2 = R 2 .

Данное равенство может быть записано как объединение двух функций:

y = R 2 - x - x c e n t e r 2 + y c e n t e r y = - R 2 - x - x c e n t e r 2 + y c e n t e r

Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 - x - x c e n t e r 2 + y c e n t e r или y = - R 2 - x - x c e n t e r 2 + y c e n t e r в указанной точке.

Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r - R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r - R , а в точках x c e n t e r + R ; y c e n t e r и
x c e n t e r - R ; y c e n t e r будут являться параллельными о у, тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r - R .

Касательная к эллипсу

Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x - x c e n t e r 2 a 2 + y - y c e n t e r 2 b 2 = 1 .

Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

y = b a · a 2 - (x - x c e n t e r) 2 + y c e n t e r y = - b a · a 2 - (x - x c e n t e r) 2 + y c e n t e r

Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у. Ниже для наглядности рассмотрим рисунок.

Пример 6

Написать уравнение касательной к эллипсу x - 3 2 4 + y - 5 2 25 = 1 в точках со значениями x равного х = 2 .

Решение

Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что

x - 3 2 4 x = 2 + y - 5 2 25 = 1 1 4 + y - 5 2 25 = 1 ⇒ y - 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5

Тогда 2 ; 5 3 2 + 5 и 2 ; - 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что

x - 3 2 4 + y - 5 2 25 = 1 y - 5 2 25 = 1 - x - 3 2 4 (y - 5) 2 = 25 · 1 - x - 3 2 4 y - 5 = ± 5 · 1 - x - 3 2 4 y = 5 ± 5 2 4 - x - 3 2

Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 - x - 3 2 , а нижний y = 5 - 5 2 4 - x - 3 2 .

Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид

y " = 5 + 5 2 4 - x - 3 2 " = 5 2 · 1 2 4 - (x - 3) 2 · 4 - (x - 3) 2 " = = - 5 2 · x - 3 4 - (x - 3) 2 ⇒ y " (x 0) = y " (2) = - 5 2 · 2 - 3 4 - (2 - 3) 2 = 5 2 3 ⇒ y = y " (x 0) · x - x 0 + y 0 ⇔ y = 5 2 3 (x - 2) + 5 3 2 + 5

Получаем, что уравнение второй касательной со значением в точке
2 ; - 5 3 2 + 5 принимает вид

y " = 5 - 5 2 4 - (x - 3) 2 " = - 5 2 · 1 2 4 - (x - 3) 2 · 4 - (x - 3) 2 " = = 5 2 · x - 3 4 - (x - 3) 2 ⇒ y " (x 0) = y " (2) = 5 2 · 2 - 3 4 - (2 - 3) 2 = - 5 2 3 ⇒ y = y " (x 0) · x - x 0 + y 0 ⇔ y = - 5 2 3 (x - 2) - 5 3 2 + 5

Графически касательные обозначаются так:

Касательная к гиперболе

Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r - α ; y c e n t e r , имеет место задание неравенства x - x c e n t e r 2 α 2 - y - y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r - b , тогда задается при помощи неравенства x - x c e n t e r 2 α 2 - y - y c e n t e r 2 b 2 = - 1 .

Гипербола может быть представлена в виде двух объединенных функций вида

y = b a · (x - x c e n t e r) 2 - a 2 + y c e n t e r y = - b a · (x - x c e n t e r) 2 - a 2 + y c e n t e r или y = b a · (x - x c e n t e r) 2 + a 2 + y c e n t e r y = - b a · (x - x c e n t e r) 2 + a 2 + y c e n t e r

В первом случае имеем, что касательные параллельны о у, а во втором параллельны о х.

Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

Пример 7

Составить уравнение касательной к гиперболе x - 3 2 4 - y + 3 2 9 = 1 в точке 7 ; - 3 3 - 3 .

Решение

Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

x - 3 2 4 - y + 3 2 9 = 1 ⇒ y + 3 2 9 = x - 3 2 4 - 1 ⇒ y + 3 2 = 9 · x - 3 2 4 - 1 ⇒ y + 3 = 3 2 · x - 3 2 - 4 и л и y + 3 = - 3 2 · x - 3 2 - 4 ⇒ y = 3 2 · x - 3 2 - 4 - 3 y = - 3 2 · x - 3 2 - 4 - 3

Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; - 3 3 - 3 .

Очевидно, что для проверки первой функции необходимо y (7) = 3 2 · (7 - 3) 2 - 4 - 3 = 3 3 - 3 ≠ - 3 3 - 3 , тогда точка графику не принадлежит, так как равенство не выполняется.

Для второй функции имеем, что y (7) = - 3 2 · (7 - 3) 2 - 4 - 3 = - 3 3 - 3 ≠ - 3 3 - 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

Получаем, что

y " = - 3 2 · (x - 3) 2 - 4 - 3 " = - 3 2 · x - 3 (x - 3) 2 - 4 ⇒ k x = y " (x 0) = - 3 2 · x 0 - 3 x 0 - 3 2 - 4 x 0 = 7 = - 3 2 · 7 - 3 7 - 3 2 - 4 = - 3

Ответ: уравнение касательной можно представить как

y = - 3 · x - 7 - 3 3 - 3 = - 3 · x + 4 3 - 3

Наглядно изображается так:

Касательная к параболе

Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y (x 0) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y " (x 0) · x - x 0 + y (x 0) . Такая касательная в вершине параллельна о х.

Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у. Получаем, что

x = a y 2 + b y + c ⇔ a y 2 + b y + c - x = 0 D = b 2 - 4 a (c - x) y = - b + b 2 - 4 a (c - x) 2 a y = - b - b 2 - 4 a (c - x) 2 a

Графически изобразим как:

Для выяснения принадлежности точки x 0 , y (x 0) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.

Пример 8

Написать уравнение касательной к графику x - 2 y 2 - 5 y + 3 , когда имеем угол наклона касательной 150 ° .

Решение

Начинаем решение с представления параболы в качестве двух функций. Получим, что

2 y 2 - 5 y + 3 - x = 0 D = (- 5) 2 - 4 · (- 2) · (3 - x) = 49 - 8 x y = 5 + 49 - 8 x - 4 y = 5 - 49 - 8 x - 4

Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.

Получаем:

k x = y " (x 0) = t g α x = t g 150 ° = - 1 3

Отсюда определим значение х для точек касания.

Первая функция запишется как

y " = 5 + 49 - 8 x - 4 " = 1 49 - 8 x ⇒ y " (x 0) = 1 49 - 8 x 0 = - 1 3 ⇔ 49 - 8 x 0 = - 3

Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.

Вторая функция запишется как

y " = 5 - 49 - 8 x - 4 " = - 1 49 - 8 x ⇒ y " (x 0) = - 1 49 - 8 x 0 = - 1 3 ⇔ 49 - 8 x 0 = - 3 x 0 = 23 4 ⇒ y (x 0) = 5 - 49 - 8 · 23 4 - 4 = - 5 + 3 4

Имеем, что точки касания - 23 4 ; - 5 + 3 4 .

Ответ: уравнение касательной принимает вид

y = - 1 3 · x - 23 4 + - 5 + 3 4

Графически изобразим это таким образом:

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Понятие касательной к окружности

Окружность имеет три возможных взаимных расположений относительно прямой:

    Если расстояние от центра окружности до прямой меньше радиуса, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой равно радиусу, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой больше радиуса, то прямая имеет две точки пересечения с окружностью.

Введем теперь понятие касательной прямой к окружности.

Определение 1

Касательной к окружности называется прямая, которая имеет с ней одну точку пересечения.

Общая точка окружности и касательной называется точкой касания (рис 1).

Рисунок 1. Касательная к окружности

Теоремы, связанные с понятием касательной к окружности

Теорема 1

Теорема о свойстве касательной : касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Доказательство.

Рассмотрим окружность с центром $O$. Проведем в точке $A$ касательную $a$. $OA=r$ (Рис. 2).

Докажем, что $a\bot r$

Будем доказывать теорему методом «от противного». Предположим, что касательная $a$ не перпендикулярна радиусу окружности.

Рисунок 2. Иллюстрация теоремы 1

То есть $OA$ - наклонная к касательной. Так как перпендикуляр к прямой $a$ всегда меньше наклонной к этой же прямой, то расстояние от центра окружности до прямой меньше радиуса. Как нам известно, в этом случае прямая имеет две точки пересечения с окружностью. Что противоречит определению касательной.

Следовательно, касательная перпендикулярна к радиусу окружности.

Теорема доказана.

Теорема 2

Обратная теореме о свойстве касательной : Если прямая, проходящая через конец радиуса какой-либо окружности перпендикулярна радиусу, то данная прямая является касательной к этой окружности.

Доказательство.

По условию задачи мы имеем, что радиус -- перпендикуляр, проведенный из центра окружности к данной прямой. Следовательно, расстояние от центра окружности до прямой равняется длине радиуса. Как мы знаем, в этом случае окружность имеет только одну точку пересечения с этой прямой. По определению 1 и получаем, что данная прямая -- касательная к окружности.

Теорема доказана.

Теорема 3

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Доказательство.

Пусть дана окружность с центром в точке $O$. Из точки $A$ (лежащей все окружности) проведены две различные касательные. Из точки касания соответственно $B$ и $C$ (Рис. 3).

Докажем, что $\angle BAO=\angle CAO$ и что $AB=AC$.

Рисунок 3. Иллюстрация теоремы 3

По теореме 1, имеем:

Следовательно, треугольники $ABO$ и $ACO$ -- прямоугольные. Так как$OB=OC=r$, а гипотенуза $OA$ -- общая, то эти треугольники равны по гипотенузе и катету.

Отсюда и получаем, что $\angle BAO=\angle CAO$ и $AB=AC$.

Теорема доказана.

Пример задачи на понятие касательной к окружности

Пример 1

Дана окружность с центром в точке $O$ и радиусом $r=3\ см$. Касательная $AC$ имеет точку касания $C$. $AO=4\ см$. Найти $AC$.

Решение.

Изобразим вначале все на рисунке (Рис. 4).

Рисунок 4.

Так как $AC$ касательная, а $OC$ радиус, то по теореме 1, получаем, что$\angle ACO={90}^{{}^\circ }$. Получили, что треугольник $ACO$ -- прямоугольный, значит, по теореме Пифагора, имеем:

\[{AC}^2={AO}^2+r^2\] \[{AC}^2=16+9\] \[{AC}^2=25\] \

Точки x_0\in \mathbb{R}, и дифференцируема в ней: f \in \mathcal{D}(x_0). Касательной прямой к графику функции f в точке x_0 называется график линейной функции , задаваемый уравнением y = f(x_0) + f"(x_0)(x-x_0),\quad x\in \mathbb{R}.

  • Если функция f имеет в точке x_0 бесконечную производную f"(x_0) = \pm \infty, то касательной прямой в этой точке называется вертикальная прямая, задаваемая уравнением x = x_0.
  • Замечание

    Прямо из определения следует, что график касательной прямой проходит через точку (x_0,f(x_0)). Угол \alpha между касательной к кривой и осью Ох удовлетворяет уравнению

    \operatorname{tg}\,\alpha = f"(x_0)= k,

    где \operatorname{tg} обозначает тангенс , а \operatorname {k} - коэффициент наклона касательной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

    Касательная как предельное положение секущей

    Пусть f\colon U(x_0) \to \R и x_1 \in U(x_0). Тогда прямая линия, проходящая через точки (x_0,f(x_0)) и (x_1,f(x_1)) задаётся уравнением

    y = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x-x_0).

    Эта прямая проходит через точку (x_0,f(x_0)) для любого x_1\in U(x_0), и её угол наклона \alpha(x_1) удовлетворяет уравнению

    \operatorname{tg}\,\alpha(x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.

    В силу существования производной функции f в точке x_0, переходя к пределу при x_1 \to x_0, получаем, что существует предел

    \lim\limits_{x_1 \to x_0} \operatorname{tg}\,\alpha(x_1) = f"(x_0),

    а в силу непрерывности арктангенса и предельный угол

    \alpha = \operatorname{arctg}\,f"(x_0).

    Прямая, проходящая через точку (x_0,f(x_0)) и имеющая предельный угол наклона, удовлетворяющий \operatorname{tg}\,\alpha = f"(x_0), задаётся уравнением касательной:

    y = f(x_0) + f"(x_0)(x-x_0).

    Касательная к окружности

    Прямая , имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.

    Свойства

    1. Касательная к окружности перпендикулярна к радиусу , проведённому в точку касания.
    2. Отрезки касательных к окружности , проведённые из одной точки , равны и составляют равные углы с прямой , проходящей через эту точку и центр окружности.
    3. Длина отрезка касательной, проведённой к окружности единичного радиуса, взятого между точкой касания и точкой пересечения касательной с лучом, проведённым из центра окружности, является тангенсом угла между этим лучом и направлением от центра окружности на точку касания. «Тангенс» от лат. tangens - «касательная».

    Вариации и обобщения

    Односторонние полукасательные

    • Если существует правая производная f"_+(x_0) < \infty, то пра́вой полукаса́тельной к графику функции f в точке x_0 называется луч
    y = f(x_0) + f"_+(x_0)(x - x_0),\quad x \geqslant x_0.
    • Если существует левая производная f"_-(x_0) < \infty, то ле́вой полукаса́тельной к графику функции f в точке x_0 называется луч
    y = f(x_0) + f"_-(x_0)(x - x_0),\quad x \leqslant x_0.
    • Если существует бесконечная правая производная f"_+(x_0) = +\infty\; (-\infty), f в точке x_0 называется луч
    x = x_0, \; y \geqslant f(x_0)\; (y \leqslant f(x_0)).
    • Если существует бесконечная левая производная f"_-(x_0) = +\infty\; (-\infty), то правой полукасательной к графику функции f в точке x_0 называется луч
    x = x_0, \; y \leqslant f(x_0)\; (y \geqslant f(x_0)).

    См. также

    • Нормаль , бинормаль

    Напишите отзыв о статье "Касательная прямая"

    Литература

    • Топоногов В. А. Дифференциальная геометрия кривых и поверхностей. - Физматкнига, 2012. - ISBN 9785891552135 .
    • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

    Отрывок, характеризующий Касательная прямая

    – По местам! – крикнул молоденький офицер на собравшихся вокруг Пьера солдат. Молоденький офицер этот, видимо, исполнял свою должность в первый или во второй раз и потому с особенной отчетливостью и форменностью обращался и с солдатами и с начальником.
    Перекатная пальба пушек и ружей усиливалась по всему полю, в особенности влево, там, где были флеши Багратиона, но из за дыма выстрелов с того места, где был Пьер, нельзя было почти ничего видеть. Притом, наблюдения за тем, как бы семейным (отделенным от всех других) кружком людей, находившихся на батарее, поглощали все внимание Пьера. Первое его бессознательно радостное возбуждение, произведенное видом и звуками поля сражения, заменилось теперь, в особенности после вида этого одиноко лежащего солдата на лугу, другим чувством. Сидя теперь на откосе канавы, он наблюдал окружавшие его лица.
    К десяти часам уже человек двадцать унесли с батареи; два орудия были разбиты, чаще и чаще на батарею попадали снаряды и залетали, жужжа и свистя, дальние пули. Но люди, бывшие на батарее, как будто не замечали этого; со всех сторон слышался веселый говор и шутки.
    – Чиненка! – кричал солдат на приближающуюся, летевшую со свистом гранату. – Не сюда! К пехотным! – с хохотом прибавлял другой, заметив, что граната перелетела и попала в ряды прикрытия.
    – Что, знакомая? – смеялся другой солдат на присевшего мужика под пролетевшим ядром.
    Несколько солдат собрались у вала, разглядывая то, что делалось впереди.
    – И цепь сняли, видишь, назад прошли, – говорили они, указывая через вал.
    – Свое дело гляди, – крикнул на них старый унтер офицер. – Назад прошли, значит, назади дело есть. – И унтер офицер, взяв за плечо одного из солдат, толкнул его коленкой. Послышался хохот.
    – К пятому орудию накатывай! – кричали с одной стороны.
    – Разом, дружнее, по бурлацки, – слышались веселые крики переменявших пушку.
    – Ай, нашему барину чуть шляпку не сбила, – показывая зубы, смеялся на Пьера краснорожий шутник. – Эх, нескладная, – укоризненно прибавил он на ядро, попавшее в колесо и ногу человека.
    – Ну вы, лисицы! – смеялся другой на изгибающихся ополченцев, входивших на батарею за раненым.
    – Аль не вкусна каша? Ах, вороны, заколянились! – кричали на ополченцев, замявшихся перед солдатом с оторванной ногой.
    – Тое кое, малый, – передразнивали мужиков. – Страсть не любят.
    Пьер замечал, как после каждого попавшего ядра, после каждой потери все более и более разгоралось общее оживление.
    Как из придвигающейся грозовой тучи, чаще и чаще, светлее и светлее вспыхивали на лицах всех этих людей (как бы в отпор совершающегося) молнии скрытого, разгорающегося огня.
    Пьер не смотрел вперед на поле сражения и не интересовался знать о том, что там делалось: он весь был поглощен в созерцание этого, все более и более разгорающегося огня, который точно так же (он чувствовал) разгорался и в его душе.
    В десять часов пехотные солдаты, бывшие впереди батареи в кустах и по речке Каменке, отступили. С батареи видно было, как они пробегали назад мимо нее, неся на ружьях раненых. Какой то генерал со свитой вошел на курган и, поговорив с полковником, сердито посмотрев на Пьера, сошел опять вниз, приказав прикрытию пехоты, стоявшему позади батареи, лечь, чтобы менее подвергаться выстрелам. Вслед за этим в рядах пехоты, правее батареи, послышался барабан, командные крики, и с батареи видно было, как ряды пехоты двинулись вперед.
    Пьер смотрел через вал. Одно лицо особенно бросилось ему в глаза. Это был офицер, который с бледным молодым лицом шел задом, неся опущенную шпагу, и беспокойно оглядывался.
    Ряды пехотных солдат скрылись в дыму, послышался их протяжный крик и частая стрельба ружей. Через несколько минут толпы раненых и носилок прошли оттуда. На батарею еще чаще стали попадать снаряды. Несколько человек лежали неубранные. Около пушек хлопотливее и оживленнее двигались солдаты. Никто уже не обращал внимания на Пьера. Раза два на него сердито крикнули за то, что он был на дороге. Старший офицер, с нахмуренным лицом, большими, быстрыми шагами переходил от одного орудия к другому. Молоденький офицерик, еще больше разрумянившись, еще старательнее командовал солдатами. Солдаты подавали заряды, поворачивались, заряжали и делали свое дело с напряженным щегольством. Они на ходу подпрыгивали, как на пружинах.

    Доказательство

    Если хорда является диаметром, то теорема очевидна.

    На рисунке 287 изображена окружность с центром O , M - точка пересечения диаметра CD и хорды AB , CD ⊥ AB . Надо доказать, что AM = MB .

    Проведём радиусы OA и OB . В равнобедренном треугольнике AOB (OA = OB ) отрезок OM - высота, а значит, и медиана, т. е. AM = MB .

    Теорема 20.2

    Диаметр окружности, делящий хорду, отличную от диаметра, пополам, перпендикулярен этой хорде.

    Докажите эту теорему самостоятельно. Подумайте, будет ли верным это утверждение, если хорда является диаметром.

    На рисунке 288 показаны все возможные случаи взаимного расположения прямой и окружности. На рисунке 288, а они не имеют общих точек, на рисунке 288, б - имеют две общие точки, на рисунке 288, в - одну.

    Рис. 288

    Определение

    Прямую, имеющую с окружностью только одну общую точку, называют касательной к окружности.

    Касательная к окружности имеет только одну общую точку с кругом, ограниченным этой окружностью. На рисунке 288, в прямая a - касательная к кругу с центром в точке O , A - точка касания.

    Если отрезок (луч) принадлежит касательной к окружности и имеет с этой окружностью общую точку, то говорят, что отрезок (луч) касается окружности. Например, на рисунке 289 изображён отрезок AB , который касается окружности в точке С .

    Теорема 20.3

    (свойство касательной)

    Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

    Доказательство

    На рисунке 290 изображена окружность с центром O , A - точка касания прямой a и окружности. Надо доказать, что OA ⊥ a .

    Рис. 289

    Рис. 290

    Рис. 291

    Предположим, что это не так, т. е. отрезок OA - наклонная к прямой a . Тогда из точки O опустим перпендикуляр OM на прямую a (рис. 291). Поскольку точка A - единственная общая точка прямой a и круга с центром O , то точка M не принадлежит этому кругу. Отсюда OM = MB + OB , где точка B - точка пересечения окружности и перпендикуляра OM . Отрезки OA и OB равны как радиусы окружности. Таким образом, OM > OA. Получили противоречие: перпендикуляр OM больше наклонной OA . Следовательно, OA ⊥ a .

    Теорема 20.4

    (признак касательной к окружности)

    Если прямая, проходящая через точку окружности, перпендикулярна радиусу, проведённому в эту точку, то эта прямая является касательной к данной окружности.

    Доказательство

    Рис. 292

    На рисунке 290 изображена окружность с центром в точке O , отрезок OA - её радиус, точка A принадлежит прямой a , OA ⊥ a . Докажем, что прямая a - касательная к окружности.

    Пусть прямая a не является касательной, а имеет ещё одну общую точку B с окружностью (рис. 292). Тогда ∆ AOB - равнобедренный (OA = OB как радиусы). Отсюда ∠ OBA = ∠ OAB = 90°. Получаем противоречие: в треугольнике AOB есть два прямых угла. Следовательно, прямая a является касательной к окружности.

    Следствие

    Если расстояние от центра окружности до некоторой прямой равно радиусу окружности, то эта прямая является касательной к данной окружности.

    Рис. 293

    Докажите это следствие самостоятельно.

    Задача. Докажите, что если через данную точку к окружности проведены две касательные, то отрезки касательных, соединяющих данную точку с точками касания, равны.

    Решение. На рисунке 293 изображена окружность с центром O .Прямые AB и AC - касательные, точки B и C - точки касания. Надо доказать, что AB = AC .

    Проведём радиусы OB и OC в точки касания. По свойству касательной OB ⊥ AB и OC ⊥ AC . В прямоугольных треугольниках AOB и AOC катеты OB и OC равны как радиусы одной окружности, AO - общая гипотенуза. Следовательно, треугольники AOB и AOC равны по гипотенузе и катету. Отсюда AB = AC .

    1. Как делит хорду диаметр, перпендикулярный ей?
    2. Чему равен угол между хордой, отличной от диаметра, и диаметром, делящим эту хорду пополам?
    3. Опишите все возможные случаи взаимного расположения прямой и окружности.
    4. Какую прямую называют касательной к окружности?
    5. Каким свойством обладает радиус, проведённый в точку касания прямой и окружности?
    6. Сформулируйте признак касательной к окружности.
    7. Каким свойством обладают касательные, проведённые к окружности через одну точку?

    Практические задания

    507. Начертите окружность с центром O , проведите хорду AB . Пользуясь угольником, разделите эту хорду пополам.

    508. Начертите окружность с центром O , проведите хорду CD . Пользуясь линейкой со шкалой, проведите диаметр, перпендикулярный хорде CD .

    509. Начертите окружность, отметьте на ней точки A и B .Пользуясь линейкой и угольником, проведите прямые, которые касаются окружности в точках A и B .

    510. Проведите прямую a и отметьте на ней точку M .Пользуясь угольником, линейкой и циркулем, проведите окружность радиуса 3 см, которая касается прямой a в точке M .Сколько таких окружностей можно провести?


    Упражнения

    511. На рисунке 294 точка O - центр окружности, диаметр CD перпендикулярен хорде AB . Докажите, что ∠ AOD = ∠ BOD .

    512. Докажите, что равные хорды окружности равноудалены от её центра.

    513. Докажите, что если хорды окружности равноудалены от её центра, то они равны.

    514. Верно ли, что прямая, перпендикулярная радиусу окружности, касается этой окружности?

    515. Прямая CD касается окружности с центром O в точке A , отрезок AB - хорда окружности, ∠ BAD = 35° (рис. 295). Найдите ∠ AOB .

    516. Прямая CD касается окружности с центром O в точке A , отрезок AB - хорда окружности, ∠ AOB = 80° (см. рис. 295). Найдите ∠ BAC .

    517. Дана окружность, диаметр которой равен 6 см. Прямая a удалена от её центра на: 1) 2 см; 2) 3 см; 3) 6 см. В каком случае прямая a является касательной к окружности?

    518. В треугольнике ABC известно, что ∠ C = 90°. Докажите, что:

    1) прямая BC является касательной к окружности с центром A , проходящей через точку C ;

    2) прямая AB не является касательной к окружности с центром C , проходящей через точку A .

    519. Докажите, что диаметр окружности больше любой хорды, отличной от диаметра.

    520. В окружности с центром O через середину радиуса провели хорду AB , перпендикулярную ему. Докажите, что ∠ AOB = 120°.

    521. Найдите угол между радиусами OA и OB окружности, если расстояние от центра O окружности до хорды AB в 2 раза меньше: 1) длины хорды AB ; 2) радиуса окружности.

    522. В окружности провели диаметр AB и хорды AC и CD так, что AC = 12 см, ∠ BAC = 30°, AB ⊥ CD . Найдите длину хорды CD .

    523. Через точку M к окружности с центром O провели касательные MA и MB , A и B - точки касания, ∠ OAB = 20°. Найдите ∠ AMB .

    524. Через концы хорды AB , равной радиусу окружности, провели две касательные, пересекающиеся в точке C .Найдите ∠ ACB .

    525. Через точку C окружности с центром O провели касательную к этой окружности, AB - диаметр окружности. Из точки A на касательную опущен перпендикуляр AD . Докажите, что луч AC - биссектриса угла BAD .

    526. Прямая AC касается окружности с центром O в точке A (рис. 296). Докажите, что угол BAC в 2 раза меньше угла AOB .

    Рис. 294

    Рис. 295

    Рис. 296

    527. Отрезки AB и BC - соответственно хорда и диаметр окружности, ∠ ABC = 30°. Через точку A провели касательную к окружности, пересекающую прямую BC в точке D .Докажите, что ∆ ABD - равнобедренный.

    528. Известно, что диаметр AB делит хорду CD пополам, но не перпендикулярен ей. Докажите, что CD - также диаметр.

    529. Найдите геометрическое место центров окружностей, которые касаются данной прямой в данной точке.

    530. Найдите геометрическое место центров окружностей, которые касаются обеих сторон данного угла.

    531. Найдите геометрическое место центров окружностей, которые касаются данной прямой.

    532. Прямые, касающиеся окружности с центром O в точках A и B , пересекаются в точке K , ∠ AKB = 120°. Докажите, что AK + BK = OK .

    533. Окружность касается стороны AB треугольника ABC в точке M и касается продолжения двух других сторон. Докажите, что сумма длин отрезков BC и BM равна половине периметра треугольника ABC .

    Рис. 297

    534. Через точку C проведены касательные AC и BC к окружности, A и B - точки касания (рис. 297). На окружности взяли произвольную точку M , лежащую в одной полуплоскости с точкой C относительно прямой AB , и через неё провели касательную к окружности, пересекающую прямые AC и BC в точках D и E соответственно. Докажите, что периметр треугольника DEC не зависит от выбора точки M .

    Упражнения для повторения

    535. Докажите, что середина M отрезка, концы которого принадлежат двум параллельным прямым, является серединой любого отрезка, который проходит через точку M и концы которого принадлежат этим прямым.

    536. Отрезки AB и CD лежат на одной прямой и имеют общую середину. Точку M выбрали так, что треугольник AMB - равнобедренный с основанием AB . Докажите, что ∆ CMD также является равнобедренным с основанием CD .

    537. На стороне MK треугольника MPK отметили точки E и F так, что точка E лежит между точками M и F , ME = EP , PF = FK . Найдите угол M , если ∠ EPF = 92°, ∠ K = 26°.

    538. В остроугольном треугольнике ABC проведена биссектриса BM , из точки M на сторону BC опущен перпендикуляр MK , ∠ ABM = ∠ KMC . Докажите, что треугольник ABC - равнобедренный.

    Наблюдайте, рисуйте, конструируйте, фантазируйте

    539. Установите закономерность форм фигур, изображённых на рисунке 298. Какую фигуру надо поставить следующей?

    Рис. 298

    error: