Нобелевская премия по физике. Досье

Альберт ЭЙНШТЕЙН . Нобелевская премия по физике, 1921 г.

Самый знаменитый из ученых XX в. и один из величайших ученых всех времен, Эйнштейн обогатил физику с присущей только ему силой прозрения и непревзойденной игрой воображения. Он стремился к поиску объяснения природы с помощью системы уравнений, которая обладала бы большой красотой и простотой. Был удостоен премии за открытие закона фотоэлектрического эффекта.

Эдуард ЭПЛТОН . Нобелевская премия по физике, 1947 г.

Эдуард Эплтон удостоен премии за исследования физики верхних слоев атмосферы, в особенности за открытие так называемого слоя Эплтона. Измерив высоту ионосферы Эплтон открыл второй непроводящий слой, сопротивление которого позволяет отражать коротковолновые радиосигналы. Этим открытием Эплтон установил возможность прямого радиовещания на весь мир.

Лео ЭСАКИ . Нобелевская премия по физике, 1973 г.

Лео Эсаки получил премию вместе с Айвором Джайевером за экспериментальные открытия туннельных явлений в полупроводниках и сверхпроводниках. Эффект туннелирования позволил достичь более глубокого понимания поведения электронов в полупроводниках и сверхпроводниках, макроскопических квантовых явлений в сверхпроводниках.

Хидэки ЮКАВА . Нобелевская премия по физике, 1949 г.

Хидэки Юкава за предсказание существования мезонов на основе теоретической работы по ядерным силам был удостоен премии. Частица Юкавы стала известна как пи-мезон, затем просто пион. Гипотеза Юкавы была принята, когда Сесил Ф. Пауэлл обнаружил частицу Ю. с помощью ионизационной камеры, помещенной на больших высотах, затем мезоны были искусственно получены в лаборатории.

Чжэньнин ЯНГ . Нобелевская премия по физике, 1957 г.

За предвидение при изучении так называемых законов четности, которое привело к важным открытиям в области элементарных частиц Чжэньнин Янг получил премию. Решена была наиболее тупиковая проблема в области физики элементарных частиц, после чего экспериментальная и теоретическая работа забила ключом.

Арвид Карлссон.

Пол Грингард.

Эрик Кандель.

Строение синаптической бляшки - контакта между двумя нейронами.

Нервная система моллюска аплизии состоит всего из 20 тысяч нейронов, поэтому на ней удобно изучать процессы запоминания.

Нобелевскими премиями по физиологии и медицине за 2000 год отмечены швед Арвид Карлссон и американцы Пол Грингард и Эрик Кандель. Их работы позволили понять, как осуществляется передача сигналов в нервной системе от одного нейрона к другому. Этот процесс происходит в местах их контакта - так называемых синапсах. Длинный отросток одного нейрона заканчивается на теле другого расширением - бляшкой, в которой постоянно вырабатываются вещества-посредники. Когда по отростку приходит нервный сигнал, эти вещества, накапливающиеся в микроскопических пузырьках, выбрасываются в щель между бляшкой и принимающим нейроном, и открывают в мембране последнего каналы для ионов. Начинается переток ионов между внутренностью нейрона и окружающей средой, что и составляет суть нервного импульса.

Арвид Карлссон, работающий на кафедре фармакологии Готенбургского университета, обнаружил, что важным веществом-посредником для работы мозга служит дофамин (до его исследований считалось, что дофамин используется в организме только как полуфабрикат для изготовления другого известного посредника - норадреналина). Это открытие позволило разработать медикаменты для лечения нервных болезней, связанных с недостаточной выработкой дофамина в мозгу, например болезни Паркинсона.

Пол Грингард, сотрудник Рокфеллеровского университета в Нью-Йорке, раскрыл подробности процесса передачи нервного импульса через синапс с помощью посредников. Он показал, что дофамин, поступив в синаптическую щель, приводит к росту концентрации другого посредника - циклического аденозинмонофосфата, а он, в свою очередь, активизирует специальный фермент, задача которого - присоединять к молекулам определенных белков фосфатные группы (фосфорилировать белки). Ионные каналы в мембране нейрона заткнуты пробочками из специального белка. Когда к молекулам этого белка присоединяется фосфат, они меняют форму и в пробочках возникают отверстия, позволяющие ионам передвигаться. Оказалось, что и многие другие процессы в нервной клетке управляются именно через фосфорилирование и дефосфорилирование белков.

Эрик Кандель, уроженец Австрии, работающий в Колумбийском университете (США), изучая память тропического морского моллюска - аплизии, обнаружил, что открытый Грингардом механизм фосфорилирования белков, управляющих движением ионов через мембрану, участвует и в формировании памяти. В дальнейшем Кандель показал, что кратковременная память основана на изменении формы белков при присоединении фосфата, а долговременная - на синтезе новых белков. Недавно Эрик Кандель создал фармацевтическую фирму, которая на основе его открытий будет разрабатывать медикаменты, улучшающие память.

О лауреатах Нобелевской премии по физике - Ж. И. Алферове, Т. Крёмере и Д.-С. Килби - можно прочитать в журнале "Наука и жизнь" № 12, 2000 г.

Жорес Иванович Алферов /Россия/ (1/4)

Герберт Кремер /США/ (1/4)

Формулировка - за открытия в области полупроводниковых гетероструктур для высокоскоростной электроники и оптоэлектроники (создание быстрых транзисторов и лазерных диодов).

Джек С. Килби /США/ (1/2)

Формулировка - за его вклад в открытие интегральной схемы (изобретение микрочипа для калькуляторов и игрушек в 1958 году вместе с Р. Нойс).

2001 год

Эрик А. Корнелл {Eric A. Cornell} /США/ (1/3)

Карл Е. Виман {Carl E. Wieman} /США/ (1/3)

Вольфганг Кеттерле {Wolfgang Ketterle} /США, немецкого происхождения/ (1/3)

Формулировка - за получение конденсата Бозе-Эйнштейна в разреженных газах щелочных атомов и за фундаментальные исследования их свойств.

Американские исследователи получили бозе-эйнштейновский конденсат из нескольких миллионов атомов рубидия (87Rb) и натрия (23Na), охладив их до температуры 100 нанокельвинов, на десятимиллионную часть градуса выше абсолютного нуля. Впоследствии температуру удалось довести до 20 нанокельвинов. Охлаждение проводилось лазерным методом, разработанным нобелевскими лауреатами 1997 года С. Чу, У. Филипсом и К. Коэн-Таннуджи.

Показать, что образовался именно бозе-эйнштейновский конденсат, удалось в ходе тонкого эксперимента, получившего название "атомный лазер".

Любая частица одновременно проявляет и волновые свойства. Электромагнитное излучение имеет квантовую природу, а, например, электроны, типичные элементарные частицы, испытывают дифракцию - чисто волновое явление. Длина волны, связанной с частицей, зависит от ее квантового состояния. Бозе-эйнштейновский конденсат должен вести себя как единая волна.

Разделив облако конденсированных атомов на две части, исследователи получили две волны, которые образовали картину интерференции. Это и свидетельствовало, что волны когерентны и, следовательно, действительно был получен бозе-эйнштейновский конденсат из атомов, находящихся в одном квантово-механическом состоянии.

2002

Раймонд Дэвис мл. и Масатоси Косиба

Формулировка За создание нейтринной астрономии.

Риккардо Джаккони

Формулировка - За создание рентгеновской астрономии и изобретение рентгеновского телескопа.

2003

Алексей Алексеевич Абрикосов, Виталий Лазаревич Гинзбург, Энтони Леггет (Anthony J. Leggett)

Формулировка - За создание теории сверхпроводимости второго рода и теории сверхтекучести жидкого гелия-3.

2004

Дэвид Гросс (David J. Gross), Дэвид Политцер (H. David Politzer), Фрэнк Вильчек (Frank Wilczek)

Формулировка - За открытие асимптотической свободы в теории сильных взаимодействий.

2005

Рой Глаубер (Roy J. Glauber)

Формулировка - За вклад в квантовую теорию оптической когерентности.

Джонн Холл (John L. Hall) и Теодор Хенш (Theodor W. Haensch)

Формулировка - За вклад в развитие лазерного высокоточного спектроскопирования и техники прецизионного расчета светового сдвига в оптических стандартах частоты.

2006

Джон Мэтер (John C. Mather), Джордж Смут (George F. Smoot)

Формулировка - За открытие анизотропии и чёрнотельной структуры энергетического спектра космического фонового излучения.

Алфёров Жорес Иванович

российский физик, лауреат Нобелевской премии 2000 года

Жорес Иванович Алфёров родился в белорусско-еврейской семье Ивана Карповича Алфёрова и Анны Владимировны Розенблюм в белорусском городе Витебске. Имя получил в честь Жана Жореса, международного борца против войны, основателя газеты «Юманите». После 1935 года семейство переехало на Урал, где отец работал директором целлюлозно-бумажного завода. Там Жорес учился с пятого по восьмой класс. 9 мая 1945 года Иван Карпович Алфёров получил направление в Минск, где Жорес окончил среднюю школу с золотой медалью. По совету учителя физики поехал поступать в Ленинградский электротехнический институт им. В.И. Ульянова (Ленина), куда был принят без экзаменов. Он учился на факультете электронной техники.

Со студенческих лет Алфёров участвовал в научных исследованиях. На третьем курсе он пошел трудиться в вакуумную лабораторию профессора Б.П. Козырева. Там он начал экспериментальную работу под руководством Н.Н. Созиной. Так, в 1950 году полупроводники стали главным делом его жизни.

В 1953 году, после окончания ЛЭТИ, Алфёров был принят на работу в Физико-технический институт им. А.Ф. Иоффе. В первой половине 50-х годов перед институтом была поставлена проблема создать отечественные полупроводниковые приборы для внедрения в отечественную индустрию. Перед лабораторией, в которой Алфёров работал младшим научным сотрудником, стояла задача: приобретение монокристаллов чистого германия и создание на его основе плоскостных диодов и триодов. Алфёров участвовал в разработке первых отечественных транзисторов и силовых германиевых приборов. За комплекс проведенных работ в 1959 году он получил первую правительственную награду, в 1961 году им была защищена кандидатская диссертация.

Будучи кандидатом физико-математических наук, Алфёров мог перейти к разработке собственной темы. В те годы была высказана мысль использования в полупроводниковой технике гетеропереходов. Создание совершенных структур на их основе могло привести к качественному скачку в физике и технике. Однако попытки реализовать приборы на гетеропереходах не давали практических результатов. Причина неудач крылась в трудности создания близкого к идеальному перехода, выявлении и получении необходимых гетеропар. Во многих журнальных публикациях и на различных научных конференциях неоднократно говорилось о бесперспективности проведения работ в этом направлении.

Алфёров продолжал технологические исследования. В основу их им были положены эпитаксиальные методы, позволяющие влиять на фундаментальные параметры полупроводника: ширина запрещенной зоны, размерность электронного сродства, эффективная масса носителей тока, показатель преломления внутри единого монокристалла. Ж.И. Алфёров с сотрудниками создали не только гетероструктуры, близкие по своим свойствам к идеальной модели, но полупроводниковый гетеролазер, работающий в непрерывном режиме при комнатной температуре. Открытие Ж.И. Алфёровым идеальных гетеропереходов и новых физических явлений – «суперинжекции», электронного и оптического ограничения в гетероструктурах – позволило еще и кардинально улучшить параметры большинства известных полупроводниковых приборов и сформировать принципиально новые, в особенности перспективные для применения в оптической и квантовой электронике. Новый период исследований гетеропереходов в полупроводниках Жорес Иванович обобщил в докторской диссертации, которую защитил в 1970 году.

Работы Ж.И. Алфёрова были по заслугам оценены международной и отечественной наукой. В 1971 году Франклиновский институт (США) присуждает ему престижную медаль Баллантайна, называемую «малой Нобелевской премией» и учрежденную для награждения за лучшие работы в области физики. В 1972 году следует самая высокая награда СССР – Ленинская премия.

С использованием технологии Алфёрова в России (впервые в мире) было организовано изготовление гетероструктурных солнечных элементов для космических батарей. Одна из них, установленная в 1986 году на космической станции «Мир», проработала на орбите весь срок эксплуатации без существенного снижения мощности.

На основе работ Алфёрова и его сотрудников созданы полупроводниковые лазеры, работающие в широкой спектральной области. Они нашли широкое использование в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.

С начала 1990-х годов Алфёров занимался исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек. В 1993–1994 годах впервые в мире реализуются гетеролазеры на основе структур с квантовыми точками – «искусственными атомами». В 1995 году Ж.И. Алфёров со своими сотрудниками впервые демонстрирует инжекционный гетеролазер на квантовых точках, работающий в непрерывном режиме при комнатной температуре. Исследования Ж.И. Алфёрова заложили основы принципиально новой электроники на основе гетероструктур с широким диапазоном применения, известной ныне как «зонная инженерия».

В 1972 году Алфёров стал профессором, а через год – заведующим базовой кафедрой оптоэлектроники ЛЭТИ. С 1987 по май 2003 года – директор ФТИ им. А.Ф. Иоффе, с мая 2003 по июль 2006 года – научный руководитель. С момента основания в 1988 году декан физико-технического факультета СПбГПУ.

В 1990–1991 годах – вице-президент АН СССР, председатель Президиума Ленинградского научного центра. Академик АН СССР (1979 год), затем РАН, почётный академик Российской академии образования. Главный редактор «Писем в Журнал технической физики». Был главным редактором журнала «Физика и техника полупроводников».

10 октября 2000 года по всем программам российского телевидения сообщили о присуждении Ж.И. Алфёрову Нобелевской премии по физике за 2000 год за развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники. Современные информационные системы должны отвечать двум основополагающим требованиям: быть скоростными, чтобы громадный объем информации можно было передать за короткий промежуток времени, и компактными, чтобы уместиться в офисе, дома, в портфеле или кармане. Своими открытиями Нобелевские лауреаты по физике за 2000 год создали основу таковой современной техники. Они открыли и развили быстрые опто– и микроэлектронные компоненты, которые создаются на базе многослойных полупроводниковых гетероструктур. На основе гетероструктур созданы мощные высокоэффективные светоизлучающие диоды, используемые в дисплеях, лампах тормозного освещения в автомобилях и светофорах. В гетероструктурных солнечных батареях, которые обширно используются в космической и наземной энергетике, достигнуты рекордные эффективности преобразования солнечной энергии в электрическую.

С 2003 года Алфёров председатель научно-образовательного комплекса «Санкт-Петербургский физико-технический научно-образовательный центр» РАН. Часть своей Нобелевской премии Алфёров отдал на развитие научно-образовательного центра физико-технического института. «В центр приходят еще школьниками, учатся по углубленной программе, потом – институт, аспирантура, академическое образование, – рассказывает член президиума РАН, академик, директор Института радиотехники и электроники Юрий Гуляев. – Когда из страны валом начали уезжать ученые, а выпускники школ почти поголовно стали предпочитать бизнес образованию и науке – возникла страшная опасность, что знания старшего поколения ученых некому будет передать. Алфёров нашел выход и буквально совершил подвиг, создав эту своего рода теплицу для будущих ученых».

22 июля 2007 года было опубликовано «Письмо десяти академиков» («письмо десяти» или «письмо академиков») – открытое письмо десяти академиков РАН (Е. Александрова, Ж. Алфёрова, Г. Абелева, Л. Баркова, А. Воробьёва, В. Гинзбурга, С. Инге-Вечтомова, Э. Круглякова, М. Садовского, А. Черепащука) «Политика РПЦ МП: консолидация или развал страны?» Президенту России В. В. Путину. В письме выражена обеспокоенность «все возрастающей клерикализацией российского общества, активным проникновением церкви во все сферы общественной жизни», в частности в систему государственного образования. «Верить или не верить в Бога – дело совести и убеждений отдельного человека, – пишут академики. – Мы уважаем чувства верующих и не ставим своей целью борьбу с религией. Но мы не можем оставаться равнодушными, когда предпринимаются попытки подвергнуть сомнению научное Знание, вытравить из образования материалистическое видение мира, подменить знания, накопленные наукой, верой. Не следует забывать, что провозглашенный государством курс на инновационное развитие может быть осуществлён лишь в том случае, если школы и вузы вооружат молодых людей знаниями, добытыми современной наукой. Никакой альтернативы этим знаниям не существует».

Письмо вызвало огромную реакцию во всем обществе. Министр образования заявил: «Письмо академиков сыграло положительную роль, поскольку вызвало широкую общественную дискуссию, ряд представителей РПЦ придерживается такого же мнения». 13 сентября 2007 года президент России В.В. Путин заявил, что изучение в государственных школах предметов религиозной тематики нельзя делать обязательным, ибо это противоречит российской конституции.

В феврале 2008 года было опубликовано Открытое письмо представителей научной общественности к президенту РФ в связи с планами введения в школах курса «Основы православной культуры» (ОПК). К середине апреля письмо подписали более 1700 человек, из которых более 1100 имеют ученые степени (кандидаты и доктора наук). Позиция подписавшихся сводится к следующему: введение ОПК неизбежно приведет к конфликтам в школах на религиозной почве; для реализации «культурных прав» верующих нужно использовать не общеобразовательные, а уже имеющиеся в достаточных количествах воскресные школы; теология, она же богословие, не является научной дисциплиной.

С 2010 года – сопредседатель Консультативного научного Совета фонда «Сколково». Инновационный центр «Сколково» (российская «Кремниевая долина») – строящийся современный научно-технологический комплекс по разработке и коммерциализации новых технологий. В составе фонда «Сколково» существует пять кластеров, соответствующих пяти направлениям развития инновационных технологий: кластер биомедицинских технологий, кластер энергоэффективных технологий, кластер информационных и компьютерных технологий, кластер космических технологий и кластер ядерных технологий.

С 2011 – депутат Государственной думы Федерального собрания РФ 6 созыва от партии КПРФ.

Учредил Фонд поддержки образования и науки для поддержки талантливой учащейся молодёжи, содействия её профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Первый вклад в Фонд был сделан Жоресом Алфёровым из средств Нобелевской премии.

В своей книге «Физика и жизнь» Ж.И. Алфёров, в частности, пишет: «Все, что создано человечеством, создано благодаря науке. И если уж суждено нашей стране быть великой державой, то она ею будет не благодаря ядерному оружию или западным инвестициям, не благодаря вере в Бога или Президента, а благодаря труду ее народа, вере в знание, в науку, благодаря сохранению и развитию научного потенциала и образования».

Из книги Вокзал мечты автора Башмет Юрий

"Зато у меня садовник – лауреат Нобелевской премии" Прежде чем рассказать об очень важном, драматическом эпизоде в моей жизни – две смешные истории про Ростроповича. Вторая, правда, не только смешная. Но все-таки она очень важна для поддержания духа и накопления

Из книги Хемингуэй автора Грибанов Борис Тимофеевич

ГЛАВА 27 ЛАУРЕАТ НОБЕЛЕВСКОЙ ПРЕМИИ Надо быстрее работать. Теперь так рано темнеет… Э. Хемингуэй, Из письма Итак, после всех странствий он вернулся в свой дом, в Финка-Вихия, о котором он говорил: «Как хорошо возвращаться сюда, куда бы ты ни ездил». Здесь все было по-прежнему

Из книги Жизнь Бунина и Беседы с памятью автора Бунина Вера Николаевна

ТО, ЧТО Я ЗАПОМНИЛА О НОБЕЛЕВСКОЙ ПРЕМИИ 9 ноября. Завтрак. Едим гречневую кашу. Все внутренне волнуемся, но стараемся быть покойными. Телеграмма Кальгрена нарушила наш покой. Он спрашивал, какое подданство у Яна. Ответили: refugi? russe . Мы не знаем, хорошо это или плохо.Перед

Из книги Изобретение театра автора Розовский Марк Григорьевич

Лауреат Нобелевской премии Томас Стернс Элиот, Элизабет Робертс, Марк Розовский «Убийство в храме. Репетиция» Спектакль-акция памяти отца Александра Меня Постановка Марка РозовскогоПремьера – апрель 2001 г.А кто убийца?Выступление на мемориальной встрече в

Из книги Шолохов автора Осипов Валентин Осипович

Лауреат Нобелевской премии Альбер Камю «Праведники» Пьеса в 2-х частях Режиссер-постановщик – Марк РозовскийПремьера – март 2003 г.Психология террораТеррор не так прост. Его осуществляют люди, имеющие и маму с отцом, и «идею» – пусть ошибочную, но свидетельствующую, что

Из книги Великие евреи автора Мудрова Ирина Анатольевна

Лауреат Нобелевской премии Борис Пастернак. Слепая красавица Пьеса в 2-х частях Сценическая редакция и постановка Марка РозовскогоХудожник Петр ПастернакПремьера – ноябрь 2007 г.Открыть ПастернакаМарк Розовский (из беседы с актерами на первой репетиции): Открыть пьесу…

Из книги Владимир Высоцкий. Жизнь после смерти автора Бакин Виктор В.

ТАСС о Нобелевской премии «Очень полезно и своевременно обратиться к опыту Шолохова - писателя, родившегося в том крае старой России, где реакционная традиция укоренилась особенно прочно…» - такой многозначительно-провокационный пассаж появился в одной статье 1946

Из книги автора

Бегин Менахем 1913–1992 премьер-министр Израиля, лауреат Нобелевской премии мира 1978 года Менахем (Вольфович) Бегин родился 16 августа 1913 года в Брест-Литовске. Его отец был секретарем брест-литовской еврейской общины, одним из первых в городе примкнувшего к сионизму –

Из книги автора

Рабин Мцхак 1922–1995 премьер-министр Израиля, лауреат Нобелевской премии мира 1994 года Ицхак Рабин родился 1 марта 1922 года в Иерусалиме в семье украинского еврея Неемии Рабина (Рубицова) и его жены Розы (Коэн), уроженки Могилева.Когда Неемии Рубицову было 18 лет, он отправился

Из книги автора

Гинзбург Виталий Лазаревич 1916–2009 российский физик-теоретик, лауреат Нобелевской премии 2003 года Виталий Лазаревич Гинзбург родился в 1916 году в Москве в семье инженера, специалиста по очистке воды, выпускника Рижского политехникума Лазаря Ефимовича Гинзбурга и врача

Из книги автора

Ландау Лев Давидович 1908–1968 физик-теоретик, лауреат Нобелевской премии 1962 года Родился в еврейской семье инженера-нефтяника Давида Львовича Ландау и его жены Любови Вениаминовны в Баку 22 января 1908 года. С 1916 года учился в бакинской еврейской гимназии, где его мать была

Из книги автора

Франк Илья Михайлович 1908–1990 советский физик, лауреат Нобелевской премии 1958 года Родился 23 октября 1908 года в семье математика Михаила Людвиговича Франка и Елизаветы Михайловны Франк (ур. Грациановой), незадолго до того переселившихся в Санкт-Петербург из Нижнего

Из книги автора

Харитон Юлий Борисович 1904–1996 российский физик-теоретик и физик-химик Юлий Борисович Харитон родился в Петербурге 27 февраля 1904 года в еврейской семье. Дед, Иосиф Давидович Харитон, был купцом первой гильдии в Феодосии. Отец, Борис Осипович Харитон, был известным

Из книги автора

Пастернак Борис Леонидович 1890–1960 один из крупнейших поэтов XX века, лауреат Нобелевской премии 1958 года Будущий поэт родился в Москве в творческой еврейской семье. Отец – художник, академик Петербургской Академии художеств Леонид Осипович (Исаак Иосифович) Пастернак,

Из книги автора

Бродский Иосиф Александрович 1940–1996 русский и американский поэт, лауреат Нобелевской премии 1987 года Иосиф Бродский родился 24 мая 1940 года в Ленинграде в еврейской семье. Отец, Александр Иванович Бродский, был военным фотокорреспондентом, вернулся с войны в 1948 году и

Из книги автора

Лауреат государственной премии Присуждение премии посмертно за актерскую работу – роль Жеглова в фильме «Место встречи изменить нельзя» и за авторское исполнение песен и баллад – это в какой-то степени восстановление справедливости по отношению к талантливому певцу,

НОБЕЛЕВСКИЕ ПРЕМИИ

Нобелевские премии - международные премии, названные по имени их учредителя шведского инженера-химика А. Б. Нобеля. Присуждаются ежегодно (с 1901) за выдающиеся работы в области физики, химии, медицины и физиологии, экономики (с 1969), за литературные произведения, за деятельность по укреплению мира. Присуждение Нобелевских премий поручено Королевской АН в Стокгольме (по физике, химии, экономике), Королевскому Каролинскому медико-хирургическому институту в Стокгольме (по физиологии и медицине) и Шведской академии в Стокгольме (по литературе); в Норвегии Нобелевский комитет парламента присуждает Нобелевские премии мира. Нобелевские премии не присуждаются дважды и посмертно.

АЛФЁРОВ Жорес Иванович (род. 15 марта 1930, Витебск Белорусская ССР, СССР) - советский и российский физик, лауреат Нобелевской премии по физике 2000 года за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов, академик РАН, почётный член Национальной Академии наук Азербайджана (с 2004 года), иностранный член Национальной академии наук Белоруссии. Его исследование сыграло большую роль в информатике. Депутат Госдумы РФ, являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по её присуждению. Является ректором-организатором нового Академического университета.


(1894-1984), российский физик, один из основателей физики низких температур и физики сильных магнитных полей, академик АН СССР (1939), дважды Герой Социалистического Труда (1945, 1974). В 1921-34 в научной командировке в Великобритании. Организатор и первый директор (1935-46 и с 1955) Института физических проблем АН СССР. Открыл сверхтекучесть жидкого гелия (1938). Разработал способ сжижения воздуха с помощью турбодетандера, новый тип мощного сверхвысокочастотного генератора. Обнаружил, что при высокочастотном разряде в плотных газах образуется стабильный плазменный шнур с температурой электронов 105-106 К. Государственная премия СССР (1941, 1943), Нобелевская премия (1978). Золотая медаль имени Ломоносова АН СССР (1959).


(р. 1922), российский физик, один из основоположников квантовой электроники, академик РАН (1991; академик АН СССР с 1966), дважды Герой Социалистического Труда (1969, 1982). Окончил Московский инженерно-физический институт (1950). Труды по полупроводниковым лазерам, теории мощных импульсов твердотельных лазеров, квантовым стандартам частоты, взаимодействию мощного лазерного излучения с веществом. Открыл принцип генерации и усиления излучения квантовыми системами. Разработал физические основы стандартов частоты. Автор ряда идей в области полупроводниковых квантовых генераторов. Исследовал формирование и усиление мощных импульсов света, взаимодействие мощного светового излучения с веществом. Изобрел лазерный метод нагрева плазмы для термоядерного синтеза. Автор цикла исследований мощных газовых квантовых генераторов. Предложил ряд идей по использованию лазеров в оптоэлектронике. Создал (совместно с А. М. Прохоровым) первый квантовый генератор на пучке молекул аммиака - мазер (1954). Предложил метод создания трехуровневых неравновесных квантовых систем (1955), а также использование лазера в термоядерном синтезе (1961). Председатель правления Всесоюзного общества «Знание» в 1978-90. Ленинская премия (1959), Государственная премия СССР (1989), Нобелевская премия (1964 , совместно с Прохоровым и Ч. Таунсом). Золотая медаль им. М. В. Ломоносова (1990). Золотая медаль им. А. Вольты (1977).

ПРОХОРОВ Александр Михайлович (11 июля 1916, Атертон, штат Квинсленд, Австралия - 8 января 2002, Москва) - выдающийся советский физик, один из основоположников важнейшего направления современной физики - квантовой электроники, лауреат Нобелевской премии по физике за 1964 год (совместно с Николаем Басовым и Чарлзом Таунсом), один из изобретателей лазерных технологий.

Научные работы Прохорова посвящены радиофизике, физике ускорителей, радиоспектроскопии, квантовой электронике и её приложениям, нелинейной оптике. В первых работах он исследовал распространение радиоволн вдоль земной поверхности и в ионосфере. После войны он деятельно занялся разработкой методов стабилизации частоты радиогенераторов, что легло в основу его кандидатской диссертации. Он предложил новый режим генерации миллиметровых волн в синхротроне, установил их когерентный характер и по результатам этой работы защитил докторскую диссертацию (1951).

Разрабатывая квантовые стандарты частоты, Прохоров совместно с Н. Г. Басовым сформулировал основные принципы квантового усиления и генерации (1953), что было реализовано при создании первого квантового генератора (мазера) на аммиаке (1954). В 1955 они предложили трёхуровневую схему создания инверсной населенности уровней, нашедшую широкое применение в мазерах и лазерах. Несколько следующих лет были посвящены работе над парамагнитными усилителями СВЧ-диапазона, в которых было предложено использовать ряд активных кристаллов, таких как рубин, подробное исследование свойств которого оказалось чрезвычайно полезным при создании рубинового лазера. В 1958 Прохоров предложил использовать открытый резонатор при создании квантовых генераторов. За основополагающую работу в области квантовой электроники, которая привела к созданию лазера и мазера, Прохоров и Н. Г. Басов были награждены Ленинской премией в 1959, а в 1964 совместно с Ч. Х. Таунсом - Нобелевской премией по физике.

С 1960 года Прохоров создал ряд лазеров различных типов: лазер на основе двухквантовых переходов (1963), ряд непрерывных лазеров и лазеров в ИК-области, мощный газодинамический лазер (1966). Он исследовал нелинейные эффекты, возникающие при распространении лазерного излучения в веществе: многофокусная структура волновых пучков в нелинейной среде, распространение оптических солитонов в световодах, возбуждение и диссоциация молекул под действием ИК-излучения, лазерная генерация ультразвука, управление свойствами твёрдого тела и лазерной плазмы при воздействии световыми пучками. Эти разработки нашли применение не только для промышленного производства лазеров, но и для создания систем дальней космической связи, лазерного термоядерного синтеза, волоконно-оптических линий связи и многих других.

(1908-68), российский физик-теоретик, основатель научной школы, академик АН СССР (1946), Герой Социалистического Труда (1954). Труды во многих областях физики: магнетизм; сверхтекучесть и сверхпроводимость; физика твердого тела, атомного ядра и элементарных частиц, физика плазмы; квантовая электродинамика; астрофизика и др. Автор классического курса теоретической физики (совместно с Е. М. Лифшицем). Ленинская премия (1962), Государственная премия СССР (1946, 1949, 1953), Нобелевская премия (1962).

(1904-90), российский физик, академик АН СССР (1970), Герой Социалистического Труда (1984). Экспериментально обнаружил новое оптическое явление (излучение Черенкова - Вавилова). Труды по космическим лучам, ускорителям. Государственная премия СССР (1946, 1952, 1977), Нобелевская премия (1958 , совместно с И. Е. Таммом и И. М. Франком).

Российский физик, академик АН СССР (1968). Окончил Московский университет (1930). Ученик С. И. Вавилова, в лаборатории которого начал работать еще будучи студентом, исследуя тушение люминесценции в жидкостях.

После окончания университета работал в Государственном оптическом институте (1930-34), в лаборатории А. Н. Теренина, изучая фотохимические реакции оптическими методами. В 1934 перешел по приглашению С. И. Вавилова в Физический институт им. П. Н. Лебедева АН СССР (ФИАН), где он работал до 1978 (с 1941 заведующий отделом, с 1947 - лабораторией). В начале 30-х гг. по инициативе С. И. Вавилова начал заниматься изучением физики атомного ядра и элементарных частиц, в частности, открытого незадолго до этого явления рождения гамма-квантами электронно-позитронных пар. В 1937 выполнил совместно с И. Е. Таммом классическую работу по объяснению эффекта Вавилова - Черенкова. В военные годы, когда ФИАН был эвакуирован в Казань, И. М. Франк занимался исследованиями прикладного значения этого явления, а в середине сороковых годов интенсивно включился в работу, связанную с необходимостью решения в кратчайший срок атомной проблемы. В 1946 организовал лабораторию атомного ядра ФИАН. В это время Франк является организатором и директором Лаборатории нейтронной физики Объединенного института ядерных исследований в Дубне (с 1947), заведующим Лабораторией Института ядерных исследований АН СССР, профессором Московского университета (с 1940) и зав. лабораторией радиоактивных излучений Научно-исследовательского физического института МГУ (1946-1956).

Основные работы в области оптики, нейтронной и ядерной физики низких энергий. Разработал теорию излучения Черенкова - Вавилова на основе классической электродинамики, показав, что источником этого излучения являются электроны, движущиеся с скоростью, большей фазовой скорости света (1937, совместно с И. Е. Таммом). Исследовал особенности этого излучения.

Построил теорию эффекта Доплера в среде с учетом ее преломляющих свойств и дисперсии (1942). Построил теорию аномального эффекта Доплера в случае сверхсветовой скорости источника (1947, совместно с В. Л. Гинзбургом). Предсказал переходное излучение, возникающие при переходе движущимся зарядом плоской границы раздела двух сред (1946, совместно с В. Л. Гинзбургом). Исследовал образование пар гамма-квантами в криптоне и азоте, получил наиболее полное и корректное сравнение теории и эксперимента (1938, совместно с Л. В. Грошевым). В середине 40-х гг. осуществлял широкие теоретические и экспериментальные исследования размножения нейтронов в гетерогенных уран-графитовых системах. Разработал импульсный метод изучения диффузии тепловых нейтронов.

Обнаружил зависимость среднего коэффициента диффузии от геометрического параметра (эффект диффузионного охлаждения) (1954). Разработал новый метод спектроскопии нейтронов.

Явился инициатором исследования короткоживущих квазистационарных состояний и деления ядер под действием мезонов и частиц высоких энергий. Выполнил ряд экспериментов по исследованию реакций на легких ядрах, в которых испускаются нейтроны, взаимодействия быстрых нейтронов с ядрами трития, лития и урана, процесса деления. Принял участие в строительстве и запуске импульсных реакторов на быстрых нейтронах ИБР-1 (1960) и ИБР-2 (1981). Создал школу физиков. Нобелевская премия (1958). Государственные премии СССР (1946, 1954,1971). Золотая медаль С. И. Вавилова (1980).

(1895-1971), российский физик-теоретик, основатель научной школы, академик АН СССР (1953), Герой Социалистического Труда (1953). Труды по квантовой теории, ядерной физике (теория обменных взаимодействий), теории излучения, физике твердого тела, физике элементарных частиц. Один из авторов теории излучения Черенкова - Вавилова. В 1950 предложил (совместно с А. Д. Сахаровым) применять нагретую плазму, помещенную в магнитном поле, для получения управляемой термоядерной реакции. Автор учебника «Основы теории электричества». Государственная премия СССР (1946, 1953). Нобелевская премия (1958 , совместно с И. М. Франком и П. А. Черенковым). Золотая медаль им. Ломоносова АН СССР (1968).

ЛАУРЕАТЫ НОБЕЛЕВСКОЙ ПРЕМИИ ПО ФИЗИКЕ

1901 Рентген В. К. (Германия) Открытие “x”-лучей (рентгеновских лучей)

1902 Зееман П., Лоренц Х. А. (Нидерланды) Исследование расщепления спектральных линий излучения атомов при помещении источника излучения в магнитное поле

1903 Беккерель А. А. (Франция) Открытие естественной радиоактивности

1903 Кюри П., Склодовская-Кюри М. (Франция) Исследование явления радиоактивности, открытого А. А. Беккерелем

1904 Стретт [лорд Рэлей (Рейли)] Дж. У. (Великобритания) Открытие аргона

1905 Ленард Ф. Э. А. (Германия) Исследование катодных лучей

1906 Томсон Дж. Дж. (Великобритания) Исследование электропроводимости газов

1907 Майкельсон А. А. (США) Создание высокоточных оптических приборов; спектроскопические и метрологические исследования

1908 Липман Г. (Франция) Открытие способа цветной фотографии

1909 Браун К. Ф. (Германия), Маркони Г. (Италия) Работы в области беспроволочного телеграфа

1910 Ваальс (ван-дер-Ваальс) Я. Д. (Нидерланды) Исследования уравнения состояния газов и жидкостей

1911 Вин В. (Германия) Открытия в области теплового излучения

1912 Дален Н. Г. (Швеция) Изобретение устройства для автоматического зажигания и гашения маяков и светящихся буев

1913 Камерлинг-Оннес Х. (Нидерланды) Исследование свойств вещества при низких температурах и получение жидкого гелия

1914 Лауэ М. фон (Германия) Открытие дифрации рентгеновских лучей на кристаллах

1915 Брэгг У. Г., Брегг У. Л. (Великобритания) Исследование структуры кристаллов с помощью рентгеновских лучей

1916 Не присуждалась

1917 Баркла Ч. (Великобритания) Открытие характеристического рентгеновского излучения элементов

1918 Планк М. К. (Германия) Заслуги в области развития физики и открытие дискретности энергии излучения (кванта действия)

1919 Штарк Й. (Германия) Открытие эффекта Доплера в канальных лучах и расщепления спектральных линий в электрических полях

1920 Гильом (Гийом) Ш. Э. (Швейцария) Создание железоникелевых сплавов для метрологических целей

1921 Эйнштейн А. (Германия) Вклад в теоретическую физику, в частности открытие закона фотоэлектрического эффекта

1922 Бор Н. Х. Д. (Дания) Заслуги в области изучения строения атома и испускаемого им излучения

1923 Милликен Р. Э. (США) Работы по определению элементарного электрического заряда и фотоэлектическому эффекту

1924 Сигбан К. М. (Швеция) Вклад в развитие электронной спектроскопии высокого разрешения

1925 Герц Г., Франк Дж. (Германия) Открытие законов соударения электрона с атомом

1926 Перрен Ж. Б. (Франция) Работы по дискретной природе материи, в частности за открытие седиментационного равновесия

1927 Вильсон Ч. Т. Р. (Великобритания) Метод визуального наблюдения траекторий электрически заряженных частиц с помощью конденсации пара

1927 Комптон А. Х. (США) Открытие изменения длины волны рентгеновских лучей, рассеяния на свободных электронах (эффект Комптона)

1928 Ричардсон О. У. (Великобритания) Исследование термоэлектронной эмиссии (зависимость эмиссионного тока от температуры - формула Ричардсона)

1929 Бройль Л. де (Франция) Открытие волновой природы электрона

1930 Раман Ч. В. (Индия) Работы по рассеянию света и открытие комбинационного рассеяния света (эффект Рамана)

1931 Не присуждалась

1932 Гейзенберг В. К. (Германия) Участие в создании квантовой механики и применение ее к предсказанию двух состояний молекулы водорода (орто- и параводород)

1933 Дирак П. А. М. (Великобритания), Шредингер Э. (Австрия) Открытие новых продуктивных форм атомной теории, то есть создание уравнений квантовой механики

1934 Не присуждалась

1935 Чедвик Дж. (Великобритания) Открытие нейтрона

1936 Андерсон К. Д. (США) Открытие позитрона в космических лучах

1936 Гесс В. Ф. (Австрия) Открытие космических лучей

1937 Дэвиссон К. Дж. (США), Томсон Дж. П. (Великобритания) Экспериментальное открытие дифракции электронов в кристаллах

1938 Ферми Э. (Италия) Доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами

1939 Лоуренс Э. О. (США) Изобретение и создание циклотрона

1940-42 Не присуждалась

1943 Штерн О. (США) Вклад в развитие метода молекулярных пучков и открытие и измерение магнитного момента протона

1944 Раби И. А. (США) Резонансный метод измерения магнитных свойств атомных ядер

1945 Паули В. (Швейцария) Открытие принципа запрета (принцип Паули)

1946 Бриджмен П. У. (США) Открытия в области физики высоких давлений

1947 Эплтон Э. В. (Великобритания) Исследование физики верхних слоев атмосферы, открытие слоя атмосферы, отражающего радиоволны (слой Эплтона)

1948 Блэкетт П. М. С. (Великобритания) Усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и физики космических лучей

1949 Юкава Х. (Япония) Предсказание существования мезонов на основе теоретической работы по ядерным силам

1950 Пауэлл С. Ф. (Великобритания) Разработка фотографического метода исследования ядерных процессов и открытие -мезонов на основе этого метода

1951 Кокрофт Дж. Д., Уолтон Э. Т. С. (Великобритания) Исследования превращений атомных ядер с помощью искусственно разогнанных частиц

1952 Блох Ф., Перселл Э. М. (США) Развитие новых методов точного измерения магнитных моментов атомных ядер и связанные с этим открытия

1953 Цернике Ф. (Нидерланды) Создание фазово-контрастного метода, изобретение фазово-контрастного микроскопа

1954 Борн М. (Германия) Фундаментальные исследования по квантовой механике, статистическая интерпретация волновой функции

1954 Боте В. (Германия) Разработка метода регистрации совпадений (акта испускания кванта излучения и электрона при рассеянии рентгеновского кванта на водороде)

1955 Куш П. (США) Точное определение магнитного момента электрона

1955 Лэмб У. Ю. (США) Открытие в области тонкой структуры спектров водорода

1956 Бардин Дж., Браттейн У., Шокли У. Б. (США) Исследование полупроводников и открытие транзисторного эффекта

1957 Ли (Ли Цзундао), Янг (Ян Чжэньнин) (США) Исследование так называемых законов сохранения (открытие несохранения четности при слабых взаимодействиях), которое привело к важным открытиям в физике элементарных частиц

1958 Тамм И. Е., Франк И. М., Черенков П. А. (СССР) Открытие и создание теории эффекта Черенкова

1959 Сегре Э., Чемберлен О. (США) Открытие антипротона

1960 Глазер Д. А. (США) Изобретение пузырьковой камеры

1961 Мессбауэр Р. Л. (Германия) Исследование и открытие резонансного поглощения гамма-излучения в твердых телах (эффект Мессбауэра)

1961 Хофстедтер Р. (США) Исследования рассеяния электронов на атомных ядрах и связанные с ними открытия в области структуры нуклонов

1962 Ландау Л. Д. (СССР) Теория конденсированной материи (в особенности жидкого гелия)

1963 Вигнер Ю. П. (США) Вклад в теорию атомного ядра и элементарных частиц

1963 Гепперт-Майер М. (США),Йенсен Й. Х. Д. (Германия) Открытие оболочечной структуры атомного ядра

1964 Басов Н. Г., Прохоров А. М. (СССР), Таунс Ч. Х. (США) Работы в области квантовой электроники, приведшие к созданию генераторов и усилителей, основанных на принципе мазера-лазера

1965 Томонага С. (Япония), Фейнман Р. Ф., Швингер Дж. (США) Фундаментальные работы по созданию квантовой электродинамики (с важными следствиями для физики элементарных частиц)

1966 Кастлер А. (Франция) Создание оптических методов изучения резонансов Герца в атомах

1967 Бете Х. А. (США) Вклад в теорию ядерных реакций, особенно за открытия, касающиеся источников энергии звезд

1968 Альварес Л. У. (США) Вклад в физику элементарных частиц, в том числе открытие многих резонансов с помощью водородной пузырьковой камеры

1969 Гелл-Ман М. (США) Открытия, связанные с классификацией элементарных частиц и их взаимодействий (гипотеза кварков)

1970 Альвен Х. (Швеция) Фундаментальные работы и открытия в магнитогидродинамике и ее приложения в различных областях физики

1970 Неель Л. Э. Ф. (Франция) Фундаментальные работы и открытия в области антиферромагнетизма и их приложение в физике твердого тела

1971 Габор Д. (Великобритания) Изобретение (1947-48) и развитие голографии

1972 Бардин Дж., Купер Л., Шриффер Дж. Р. (США) Создание микроскопической (квантовой) теории сверхпроводимости

1973 Джайевер А. (США),Джозефсон Б. (Великобритания), Эсаки Л. (США) Исследование и применение туннельного эффекта в полупроводниках и сверхпроводниках

1974 Райл М., Хьюиш Э. (Великобритания) Новаторские работы по радиоастрофизике (в частности, апертурный синтез)

1975 Бор О., Моттельсон Б. (Дания), Рейнуотер Дж. (США) Разработка так называемой обобщенной модели атомного ядра

1976 Рихтер Б., Тинг С. (США) Вклад в открытие тяжелой элементарной частицы нового типа (джипси-частица)

1977 Андерсон Ф.,Ван Флек Дж. Х. (США),Мотт Н. (Великобритания) Фундаментальные исследования в области электронной структуры магнитных и неупорядоченных систем

1978 Вильсон Р. В., Пензиас А. А. (США) Открытие микроволнового реликтового излучения

1978 Капица П. Л. (СССР) Фундаментальные открытия в области физики низких температур

1979 Вайнберг (Уэйнберг) С., Глэшоу Ш. (США), Салам А. (Пакистан) Вклад в теорию слабых и электромагнитных взаимодействий между элементарными частицами (так называемое электрослабое взаимодействие)

1980 Кронин Дж. У, Фитч В. Л. (США) Открытие нарушения фундаментальных принципов симметрии в распаде нейтральных К-мезонов

1981 Бломберген Н., Шавлов А. Л. (США) Развитие лазерной спектроскопии

1982 Вильсон К. (США) Разработка теории критических явлений в связи с фазовыми переходами

1983 Фаулер У. А., Чандрасекар С. (США) Работы в области строения и эволюции звезд

1984 Мер (Ван-дер-Мер) С. (Нидерланды), Руббиа К. (Италия) Вклад в исследования в области физики высоких энергий и в теорию элементарных частиц [открытие промежуточных векторных бозонов (W, Z0)]

1985 Клитцинг К. (Германия) Открытие “квантового эффекта Холла”

1986 Бинниг Г. (Германия), Рорер Г. (Швейцария), Руска Э. (Германия) Создание сканирующего туннельного микроскопа

1987 Беднорц Й. Г. (Германия), Мюллер К. А. (Швейцария) Открытие новых (высокотемпературных) сверхпроводящих материалов

1988 Ледерман Л. М., Стейнбергер Дж., Шварц М. (США) Доказательство существования двух типов нейтрино

1989 Демелт Х. Дж. (США), Пауль В. (Германия) Развитие метода удержания одиночного иона в ловушке и прецизионная спектроскопия высокого разрешения

1990 Кендалл Г. (США), Тейлор Р. (Канада), Фридман Дж. (США) Основополагающие исследования, имеющие важное значение для развития кварковой модели

1991 Де Жен П. Ж. (Франция) Достижения в описании молекулярного упорядочения в сложных конденсированных системах, особенно в жидких кристаллах и полимерах

1992 Шарпак Ж. (Франция) Вклад в развитие детекторов элементарных частиц

1993 Тейлор Дж. (младший), Халс Р. (США) За открытие двойных пульсаров

1994 Брокхауз Б. (Канада), Шалл К. (США) Технология исследования материалов путем бомбардирования нейтронными пучками

1995 Перл М., Рейнес Ф. (США) За экспериментальный вклад в физику элементарных частиц

1996 Ли Д., Ошерофф Д., Ричардсон Р. (США) За открытие сверхтекучести изотопа гелия

1997 Чу С., Филлипс У. (США), Коэн-Тануджи К. (Франция) За развитие методов охлаждения и захвата атомов с помощью лазерного излучения.

1998 Роберт Беттс Лафлин (англ. Robert Betts Laughlin; 1 ноября 1950, Визалия, США) - профессор физики и прикладной физики в Стэнфордском университете, лауреат Нобелевской премии по физике в 1998 г., совместно с Х. Штермером и Д. Цуи, «за открытие новой формы квантовой жидкости с возбуждениями, имеющими дробный электрический заряд».

1998 Хорст Лю?двиг Ште?рмер (нем. Horst Ludwig St?rmer; род. 6 апреля 1949, Франкфурт-на-Майне) - немецкий физик, лауреат Нобелевской премии по физике в 1998 году (совместно с Робертом Лафлином и Дэниелом Цуи) «за открытие новой формы квантовой жидкости с возбуждениями, имеющими дробный электрический заряд».

1998 Дэ?ниел Чи Цуи (англ. Daniel Chee Tsui, пиньинь Cu? Q?, палл. Цуй Ци, род. 28 февраля 1939, провинция Хэнань, Китай) - американский физик китайского происхождения. Занимался исследованиями в области электрических свойств тонких пленок, микроструктуры полупроводников и физики твёрдого тела. Лауреат Нобелевской премии по физике в 1998 году (совместно с Робертом Лафлином и Хорстом Штермером) «за открытие новой формы квантовой жидкости с возбуждениями, имеющими дробный электрический заряд».

1999 Герард "т Хоофт (нидерл. Gerardus (Gerard) "t Hooft, родился 5 июля 1946, Хелдер, Нидерланды), профессор Утрехтского университета (Нидерланды), лауреат Нобелевской премии по физике за 1999 год (совместно с Мартинусом Вельтманом). "т Хоофт вместе со своим преподавателем Мартинусом Вельтманом разработали теорию, которая помогла прояснить квантовую структуру электрослабых взаимодействий. Эту теорию создали в 1960-е годы Шелдон Глэшоу, Абдус Салам и Стивен Вайнберг, предположившие, что слабое и электромагнитное взаимодействия являются проявлением единого электрослабого взаимодействия. Но применение теории для расчёта свойств частиц, которые она предсказывала, было безрезультатным. Разработанные "т Хоофтом и Вельтманом математические методы позволили предсказать некоторые эффекты электрослабого взаимодействия, позволили оценить массы W и Z промежуточных векторных бозонов, предсказанных теорией. Полученные значения хорошо согласуются с экспериментальными значениями. Методом Вельтмана и "т Хоофта также была рассчитана масса топ-кварка, экспериментально обнаруженного в 1995 годе в Национальной лаборатории им. Э. Ферми (Фермилаб, США).

1999 Мартинус Вельтман (род. 27 июня 1931, Валвейк, Нидерланды) - нидерландский физик, лауреат Нобелевской премии по физике в 1999 г. (совместно с Герардом ’т Хоофтом). Вельтман работал совместно со своим студентом, Герардом ’т Хоофтом, над математической формулировкой калибровочных теорий - теорией перенормировки. В 1977 г. ему удалось предсказать массу топ-кварка, что послужило важным шагом для его обнаружения в 1995 г. В 1999 г. Вельтман, совместно с Герардом ’т Хоофтом, был награждён Нобелевской премией по физике «за прояснение квантовой структуры электрослабых взаимодействий».

2000 Жорес Иванович Алфёров (род. 15 марта 1930, Витебск Белорусская ССР, СССР) - советский и российский физик, лауреат Нобелевской премии по физике 2000 года за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов, академик РАН, почётный член Национальной Академии наук Азербайджана (с 2004 года), иностранный член Национальной академии наук Белоруссии. Его исследование сыграло большую роль в информатике. Депутат Госдумы РФ, являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по её присуждению. Является ректором-организатором нового Академического университета.

2000 Герберт Крёмер (нем. Herbert Kr?mer; род. 25 августа 1928, Веймар, Германия) - немецкий физик, лауреат Нобелевской премии по физике. Половина премии за 2000 г., совместно с Жоресом Алфёровым, «за разработку полупроводниковых гетероструктур, используемых в высокочастотной и опто-электронике». Вторая половина премии была присуждена Джеку Килби «за вклад в изобретение интегральных схем».

2000 Джек Килби (англ. Jack St. Clair Kilby, 8 ноября 1923, Джефферсон-Сити - 20 июня 2005, Даллас) - американский учёный. Лауреат Нобелевской премии по физике в 2000 году за своё изобретение интегральной схемы в 1958 году в период работы в Texas Instruments (TI). Также он - изобретатель карманного калькулятора и термопринтера (1967).

error: