Активный транспорт кратко. Транспорт веществ через клеточные мембраны

Перенос некоторых неорганических ионов идёт против градиента концентрации при учас­тии транспортных АТФ-аз (ионных насосов). Все ионные насосы одновременно служат фер­ментами, способными к аутофосфорилированию и аутодефосфорилированию. АТФ-азы различа­ются по ионной специфичности, количеству пе­реносимых ионов, направлению транспорта. В результате функционирования АТФ-азы переносимые ионы накапливаются с одной сто­роны мембраны. Наиболее распространены в плазматической мембране клеток человека На + ,К + -АТФ-аза, Са 2+ -АТФ-аза и Н + ,К + ,-АТФ-аза слизистой оболочки желудка.

Na + , К + -АТФ-аза

Этот фермент-переносчик катализирует АТФ-зависимый транспорт ионов Na + и К + через плаз­матическую мембрану. Nа + ,К + -АТФ-аза состо­ит из субъединиц α и β; α - каталитическая большая субъединица, β - малая субъедини­ца (гликопротеин). Активная форма транслоказы - тетрамер (αβ) 2 .

Na + ,К + -АТФ-аза отвечает за поддержание высокой концентрации К + в клетке и низкой концентрации Na + . Так как Nа + ,К + -АТФ-аза вы­качивает три положительно заряженных иона, а закачивает два, то на мембране возникает элек­трический потенциал с отрицательным значе­нием на внутренней части клетки по отноше­нию к её наружной поверхности.

Са 2+ -АТФ-аза

В цитозоле «покоящихся» клеток концент­рация Са 2+ составляет ~10" 7 моль/л, тогда как вне клетки она равна ~2-10 -3 моль/л. Поддер­живает такую разницу в концентрации система активного транспорта ионов кальция; её основ­ные компоненты - кальциевые насосы - Са 2+ -АТФ-азы и Na + ,Ca 2+ -обменники.

Са 2+ -АТФ-аза локализована не только в плаз­матической мембране, но и в мембране ЭР. Фер­мент состоит из десяти трансмембранных до­менов, пронизывающих клеточную мембрану. Между вторым и третьим доменами находятся несколько остатков аспарагиновой кислоты, участвующих в связывании кальция. Область между четвёртым и пятым доменами имеет центр для присоединения АТФ и аутофосфорилирования по остатку аспарагиновой кислоты. Са 2+ -АТФ-азы плазматических мембран некоторых клеток регулируются белком кальмодулином. Каждая из Са 2+ -АТФ-аз плазматической мемб­раны и ЭР представлена несколькими изоформами.

Нарушение активности Са 2+ -АТФ-азы при па­тологии. Одна из причин нарушения работы

Са 2+ -АТФ-азы - активация перекисного окис­ления липидов (ПОЛ) мембран. Окислению подвергаются как ацильные остатки жирных кислот в составе фосфолипидов, так и SH-группы в активном центре фермента. Нарушение структуры липидного окружения и структуры активного центра приводит к изменению конформации АТФ-азы, потере сродства к ионам кальция и способности к аутофосфорилированию. АТФ-аза перестаёт выкачивать ионы кальция из цитозоля клетки, повышается кон­центрация внутриклеточного кальция, Са 2+ уси­ливает мышечное сокращение, возрастает то­нус мышечной стенки, что приводит к повы­шению АД. Не последнюю роль нарушение функционирования Са 2+ -АТФ-азы играет в раз­витии атеросклероза, рака, иммунных патоло­гий.

2. Вторично-активный транспорт

Перенос некоторых растворимых веществ против градиента концентрации зависит от од­новременного или последовательного переноса

другого вещества по градиенту концентрации в том же направлении (активный симпорт) или в противоположном (активный антипорт). В клет­ках человека ионом, перенос которого проис­ходит по градиенту концентрации, чаще всего служит Na + .

Примером такого типа транспорта может слу­жить Nа + ,Са 2+ -обменник плазматической мем­браны (активный антипорт), ионы натрия по градиенту концентрации переносятся в клетку, а ионы Са 2+ против градиента концентрации выходят из клетки.

По механизму активного симпорта происхо­дят всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы, аминокислот клетками почек.

    перенос через мембрану макромолекул И частиц : ЭНДОЦИТОЗ И ЗКОЦИТОЗ

Траспортные белки обеспечивают перемещение через клеточную мембрану полярных молекул не­большого размера, но они не могут транспортиро­вать макромолекулы, например белки, нуклеино­вые кислоты, полисахариды или ещё более крупные частицы. Механизмы, с помощью которых клетки могут усваивать такие вещества или удалять их из клетки, отличаются от механизмов транспорта ионов и полярных соединений.

Жизнедеятельность клетки связана с постоянным обменом ее содержимого с окружающей средой. Точно так же и внутри клетки происходит перемещение веществ между органеллами или компартментами. Все эти события связаны с преодолением основного барьера для веществ - мембраны, ограничивающей органеллу или саму клетку. При этом следует помнить, что главная функция биомембран - избирательность транспорта для различных - веществ и ионов. Возможные способы транспорта через мембраны можно разделить на 4 основных типа: пассивная диффузия, облегченная диффузия, активный транспорт и цитозы.

Пассивная диффузия . Это процесс транспорта через мембраны веществ из области с большей их концентрацией в область с меньшей концентрацией (по химическому градиенту), в котором не принимают участия транспортные белки и не затрачивается энергия. С помощью такого способа через мембрану транспортируются малые незаряженные молекулы, например молекулы газов, некоторые анестезирующие вещества, а также вода. Чтобы пересечь бислой, молекула должна преодолеть поверхностное натяжение на границе мембраны, проникнуть в бислой, продиффундировать через него и выйти с противоположной стороны, вновь преодолев энергетический барьер на границе раздела фаз. Этим и объясняется избирательная проницаемость липидного бислоя для небольших молекул неэлектролитов. Удивительным является факт весьма легкого и быстрого проникновения воды через мембраны: показано, что молекуле воды требуется для пересечения бислоя всего 1 мкс. Для объяснения этого феномена в последнее время появляются основанные на некоторых экспериментальных данных предположения о том, что в мембранах все же существуют какие-то белковые проводящие пути для воды, либо молекулы воды пользуются локальными дефектами в структуре бислоев.

Перемещение одних только молекул воды через полупроницаемую мембрану можно рассматривать как частный вид диффузии - осмос . Под осмосом понимают переход молекул воды из области с высоким водным потенциалом и низкой концентрацией растворенного вещества в область с низким водным потенциалом и высокой концентрацией растворенного вещества (рис. 4.9). В этом случае молекулы воды будут переходить из гипотонического раствора в гипертонический до тех пор, пока не наступит равновесие и оба раствора не станут изотоническими по отношению друг к другу.

Чтобы обозначить величину уменьшения водного потенциала , вызванного присутствием растворенных веществ, используют термин «осмотическое давление ». Под осмотическим давлением понимают давление, которое следует приложить к раствору, чтобы остановить осмотическое поступление воды в него через полупроницаемую мембрану. Повышение концентрации растворенного вещества увеличивает осмотическое давление и уменьшает водный потенциал раствора.


Перемещение воды через плазматические мембраны клеток в соответствии с законами осмоса создает организмам немалые проблемы, особенно для водных обитателей. Поэтому осморегуляция (поддержание водного потенциала в клетке на постоянном уровне) является важной стороной функциональной деятельности большинства организмов, и на ее осуществление зачастую тратится значительная доля запасенной клеткой энергии.

Скорость диффузии веществ через мембраны зависит от многих причин: растворимости вещества в мембране, коэффициента диффузии в мембране, а также разности концентрации вещества снаружи и внутри клетки (градиента концентрации) (рис. 4.10).

Облегченная диффузия . Этот вид транспорта осуществляется с помощью транспортных белков по электрохимическому градиенту (разность электрических потенциалов и концентраций веществ) без затрат энергии. Это селективный перенос веществ - вещество будет транспортировано через мембрану лишь в том случае, если для него в мембране имеется функционирующий транспортный белок. Поскольку в облегченной диффузии задействованы белки, этот процесс, в отличие от пассивной диффузии, может достигать эффекта насыщения. Стадия насыщения (рис. 4.10) характеризует состояние, когда все транспортные белки для данного вещества насыщены субстратом и скорость транспорта этого вещества достигает максимума.

С помощью облегченной диффузии через мембрану транспортируются многие вещества, в том числе гидрофильные молекулы: углеводы, аминокислоты, нуклеотиды, различные ионы и др. При этом скорость транспорта значительно превышает скорость пассивной диффузии (рис.4.10). Принципиально возможны два пути переноса веществ и ионов через мембрану: с помощью переносчиков и каналов. Поскольку трансмембранное перемещение белков в биомембранах не обнаружено, предложена модель, описывающая работу переносчиков - механизм «пинг-понг». Согласно этому механизму, транспорт веществ связан с конформационными изменениями в структуре белка-переносчика, которые индуцируются связыванием транспортируемого вещества (рис. 4.11).

Работу каналов можно рассмотреть на примере ацетилхолинового рецептора. Этот интегральный белок находится в основном в мембранах нервномышечных соединений скелетных мышц. Он состоит из пяти субъединиц четырех типов и открывается в ответ на связывание ацетилхолина (нейромедиатор ). При взаимодействии с ацетилхолином канал открывается, что связано с изменением конформации субъединиц, и пропускает определенные ионы (Na + , K + , Ca 2+ и некоторые другие), остается в таком положении 1 мс, а затем закрывается. Селективное перемещение катионов изменяет трансмембранный потенциал, в результате чего происходит электрическое возбуждение мышечной клетки, что приводит к сокращению мышцы. Изучение структуры ацетилхолинового рецептора показало, что пять белковых субъединиц встроены в бислой определенным образом: они организованы вокруг центральной поры диаметром 3 нм, через которую и транспортируются катионы. Непроницаемость канала для анионов и в три раза большую проницаемость для катионов, чем для незаряженных молекул, можно объяснить электростатическими взаимодействиями, возникающими благодаря присутствию в воротах канала биполярных или отрицательно заряженных групп.

Особым типом транспорта веществ в ходе облегченной диффузии является использование ионофоров, действие которых изучено на искусственных мембранах. Под ионофорами понимают низкомолекулярные вещества пептидной природы, избирательно транспортирующие через мембраны ионы. Различают ионофоры-каналообразователи (грамицидин А, амфотерицин B и др.) и ионофоры-переносчики (валиномицин, энниатины, боверицин).

Валиномицин представляет собой антибиотик депсипептидной природы, организованный по типу ионной «ловушки». В неполярных растворителях конформация валиномицина напоминает собой браслет, внутренняя полость которого точно подогнана под размеры ионов калия. Внешняя сфера валиномицина гидрофобна, в результате чего он способен перемещаться в липидном бислое и транспортировать через него ионы.

Хорошо изученным примером ионофоров-каналообразователей служит грамицидин А. Это антибиотик пептидной природы, состоящий из 15 аминокислот. Две молекулы грамицидина могут пронизывать мембрану в виде двойной спирали или образуя димер «голова к голове». В таких конформациях молекулы грамицидина А формируют полый цилиндр, по которому могут перемещаться ионы металлов.

В биологических мембранах ионофорный тип транспорта до сих пор не обнаружен.

Активный транспорт . Это сопряженный с потреблением энергии перенос молекул или ионов через мембрану против электрохимического градиента, в котором задействованы транспортные белки. Благодаря активному транспорту в жизнеспособных клетках между двумя сторонами мембраны поддерживается разность потенциалов, т. е. электрический заряд, при этом у большинства изученных клеток внутреннее содержимое заряжено отрицательно по отношению к внешней среде.

Активный транспорт сопряжен со значительными затратами энергии: некоторые клетки тратят более трети всей запасенной энергии для создания ионного градиента на мембране. Это необходимо для таких жизненно важных процессов, как осморегуляция, генерация и передача нервных импульсов, перенос в клетки питательных веществ (сахаров, аминокислот и др.).

Разнообразные системы активного транспорта отличаются друг от друга, в первую очередь тем, что служит для них источником энергии: АТР, ионный градиент, фосфоенолпируват, видимый свет. Наиболее хорошо изученной системой активного транспорта является натрий-калиевая (Na + /K +)-АТР-аза, функционирующая в плазматических мембранах животных клеток. Этот интегральный белок состоит из двух субъединиц: бульшая представлена полипептидом, имеющим участки связывания для ионов натрия и АТР на цито плазматической поверхности, а ионов калия - на наружной; меньшая субъединица является гликопротеином. Работа (Na + /K+)-АТР-азы заключается в следующем: при гидролизе одной молекулы АТР из клетки выкачивается 3 иона Na + , а извне в клетку проводится 2 иона K + , т. е. выводится больше положительных ионов, чем проводится внутрь клетки. Так на внутренней стороне мембраны создается избыточный отрицательный заряд, и клетка становится электрогенной. В мембранах обычно присутствуют проводящие пути для облегченной диффузии ионов натрия и калия по электрохимическому градиенту, и этот транспорт, хотя и с малой скоростью, совершается. Однако в жизнеспособной клетке не происходит уравнивания концентраций ионов, создающих электрохимический градиент на мембране, благодаря постоянной работе первичных активных переносчиков, таких, как (Na + /K +)-АТР-аза. Таким образом, ионные насосы , принимающие участие в первичном активном транспорте, осуществляют перемещение заряда на мембране и создают на ней электрохимический градиент, в котором заключена энергия.

Вторичные активные переносчики используют электрохимические градиенты в качестве движущей силы для транспорта растворимых веществ. Этот процесс можно проследить на примере клеток эпителия кишечника. Образуемые в кишечнике при переваривании пищи строительные блоки (аминокислоты, глюкоза и др.) поступают в кровь при диффузии через мембраны кровеносных сосудов, и эта диффузия осуществляется в ходе симпорта (однонаправленного транспорта) с ионами натрия. Ионы натрия стремятся возвратиться в клетку согласно закономерностям облегченной диффузии и как бы тянут с собой молекулы питательных веществ. В мембранах обнаружены специфические переносчики сахаров и разных аминокислот, которые функционируют в системе активного транспорта, накапливая в клетке эти вещества, извлекая их даже из очень разбавленных растворов, т. е. против химического градиента. Эти же транспортные системы могут участвовать и в облегченной диффузии, если вещества транспортируются по химическому градиенту. Кроме описанного выше примера симпорта питательных веществ вместе с возвращающимися в клетку ионами натрия, существует и разнонаправленный транспорт - антипорт . Например, белок полосы 3 эритроцитов осуществляет сопряженный транспорт Cl - и HCO3 - в противоположных направлениях через эритроцитарную мембрану.

У аэробных бактерий транспорт питательных веществ в клетку осуществляется в ходе симпорта не с ионами Na + , а с протонами. Наилучшим образом охарактеризованным примером подобного переносчика служит лактозопермеаза кишечной палочки. Этот интегральный белок использует протонный электрохимический градиент, созданный на мембране в результате окислительного фосфорилирования, для симпорта лактозы: с каждым возвращенным в клетку протоном переносится одна молекула лактозы.

Следует отметить, что АТР-азы представляют собой ферменты, катализирующие взаимообратимые реакции: при гидролизе АТР ионы транспортируются против электрохимического градиента, а перенос ионов по электрохимическому градиенту через каналы АТР-азы может запускать синтез АТР.

Эндоцитоз и экзоцитоз . Эти способы переноса веществ через мембраны связаны с образованием впячиваний (инвагинаций ) мембраны и формированием особых мембранных везикул , обеспечивающих прохождение через мембрану крупных макромолекул и частиц. При этом эндоцитоз обеспечивает поглощение клеткой веществ, а экзоцитоз - выделение из клетки. Принято делить цитозы еще на два типа: пиноцитоз и фагоцитоз . Пиноцитоз - это механизм, с помощью которого через мембрану проводятся белки и другие макромолекулы в жидкой фазе. Фагоцитоз представляет собой поглощение клеткой крупных частиц, например бактерий, вирусов. Эти виды транспорта характерны в основном для эукариотических клеток, причем у животных фагоцитоз осуществляют только специализированные клетки, такие, например, как макрофаги. Для многих простейших, например амеб, фагоцитоз является основным способом питания.

Важной особенностью цитозов является последовательное образование и слияние везикул, в которых заключено транспортируемое вещество, причем секретируемые и поглащаемые молекулы локализуются в везикулах и не смешиваются с другими макромолекулами или органеллами клетки. С помощью не установленного пока механизма каждый пузырек сливается только со специфическими мембранными структурами (рис. 4.12).

В основе цитозов лежит еще одно характерное свойство липидных слоев биомембран - способность к агрегации, в результате чего мелкие везикулы объединяются в более крупные или происходит объединение везикул с плазматической мембраной клетки. Такой механизм основан на универсальности структуры биомембран, участвующих в формировании клеточных органелл и протопластов. Аналогичное явление можно наблюдать в пенах, где мыльные пузыри, также состоящие из амфифильных молекул (мыла - соли жирных кислот), обладают тенденцией к объединению с образованием более крупных структур. Способность мембран к агрегации лежит в основе такого широко распространенного способа переноса генетической информации, как слияние протопластов.

Скорость цитозов удивительно высокая. Показано, что клетки печени поглощают путем эндоцитоза за 1 ч количество жидкости, составляющее не менее 20% их объема, и количество мембранного материала, по площади превышающее в пять раз площадь их плазматической мембраны. Сходство цитозов с другими способами транспорта веществ через биомембраны состоит в том, что переносимое вещество должно быть «узнано» мембранными компонентами, иными словами, и в этом случае проявляется избирательная проницаемость мембран для различных соединений.

Обмен клетки с внешней средой различными веществами и энергией является жизненно необходимым условием ее существования.

Для поддержания постоянства химического состава и свойств цитоплазмы в условиях, когда имеют место существенные различия химического состава и свойств внешней среды и цитоплазмы клетки, должны существовать специальные транспортные механизмы , избирательно перемещающие вещества через .

В частности, клетки должны располагать механизмами доставки кислорода и питательных веществ из среды существования и удаления в нее метаболитов. Градиенты концентраций различных веществ существуют не только между клеткой и внешней средой, но и между органеллами клетки и цитоплазмой, и транспортные потоки веществ наблюдаются между различными отсеками клетки.

Особое значение для восприятия и передачи информационных сигналов имеет поддержание трансмембранной разности концентраций минеральных ионов Na + , К + , Са 2+ . Клетка затрачивает на поддержание концентрационных градиентов этих ионов существенную часть своей метаболической энергии. Запасаемая в ионных градиентах энергия электрохимических потенциалов обеспечивает постоянную готовность плазматической мембраны клетки отвечать на воздействие раздражителей. Поступление кальция в цитоплазму из межклеточной среды или из клеточных органелл обеспечивает ответ многих клеток на гормональные сигналы, контролирует выделение нейромедиаторов в , запускает .

Рис. Классификация типов транспорта

Для понимания механизмов перехода веществ через клеточные мембраны необходимо учитывать как свойства этих веществ, так и свойства мембран. Транспортируемые вещества различаются молекулярной массой, переносимым зарядом, растворимостью в воде, липидах и рядом других свойств. Плазматическая и другие мембраны представлены обширными участками липидов, через которые легко диффундируют жирорастворимые неполярные вещества и не проходят вода и водорастворимые вещества полярной природы. Для трансмембранного перемещения этих веществ необходимо наличие специальных каналов в клеточных мембранах. Транспорт молекул полярных веществ затрудняется при увеличении их размеров и заряда (в этом случае требуются дополнительные механизмы переноса). Перенос веществ против концентрационных и других градиентов также требует участия специальных переносчиков и затрат энергии (рис. 1).

Рис. 1. Простая, облегченная диффузия и активный транспорт веществ через мембраны клеток

Для трансмембранного перемещения высокомолекулярных соединений, надмолекулярных частиц и компонентов клеток, не способных проникать через мембранные каналы, используются особые механизмы — фагоцитоз, пиноцитоз, экзоцитоз, перенос через межклеточные пространства. Таким образом, трансмембранное перемещение различных веществ может осуществляться с использованием разных способов, которые принято подразделять по признакам участия в них специальных переносчиков и энергозатратам. Существуют пассивный и активный транспорт через мембраны клетки.

Пассивный транспорт — перенос веществ через биомембрану по градиенту (концентрационный, осмотический, гидродинамический и т.д.) и без расхода энергии.

Активный транспорт — перенос веществ через биомембрану против градиента и с расходом энергии. У человека 30- 40 % всей энергии, образующейся в ходе метаболических реакций, расходуется на этот вид транспорта. В почках 70-80 % потребляемого кислорода идет на активный транспорт.

Пассивный транспорт веществ

Под пассивным транспортом понимают перенос вещества через мембраны по различного рода градиентам (электрохимического потенциала, концентрации вещества, электрического поля, осмотического давления и др.), не требующий непосредственной затраты энергии на его осуществление. Пассивный транспорт веществ может происходить посредством простой и облегченной диффузии. Известно, что под диффузией понимают хаотические перемещения частиц вещества в различных средах, обусловленные энергией его тепловых колебаний.

Если молекула вещества электронейтральна, то направление диффузии этого вещества будет определяться лишь разностью (градиентом) концентраций вещества в средах, разделенных мембраной, например вне и внутри клетки или между ее отсеками. Если молекула, ионы вещества несут на себе электрический заряд, то на диффузию будут оказывать влияние как разность концентраций, величина заряда этого вещества, так и наличие и знак зарядов на обеих сторонах мембраны. Алгебраическая сумма сил концентрационного и электрического градиентов на мембране определяет величину электрохимического градиента.

Простая диффузия осуществляется за счет наличия градиентов концентрации определенного вещества, электрического заряда или осмотического давления между сторонами клеточной мембраны. Например, среднее содержание ионов Na+ в плазме крови составляет 140 мМ/л, а в эритроцитах — приблизительно в 12 раз меньше. Эта разность концентрации (градиент) создает движущую силу, которая обеспечивает переход натрия из плазмы в эритроциты. Однако скорость такого перехода малая, так как мембрана имеет очень низкую проницаемость для ионов Na + . Гораздо больше проницаемость этой мембраны для калия. На процессы простой диффузии не затрачивается энергия клеточного метаболизма.

Скорость простой диффузии описывается уравнением Фика:

dm/dt = -kSΔC/x,

гдеdm / dt - количество вещества, диффундирующее за единицу времени; к - коэффициент диффузии, характеризующий проницаемость мембраны для диффундирующего вещества;S - площадь поверхности диффузии; ΔС — разность концентраций вещества по обе стороны мембраны; х — расстояние между точками диффузии.

Из анализа уравнения диффузии ясно, что скорость простой диффузии прямо пропорциональна градиенту концентрации вещества между сторонами мембраны, проницаемости мембраны для данного вещества, площади поверхности диффузии.

Очевидно, что наиболее легко перемещаться через мембрану путем диффузии будут те вещества, диффузия которых осуществляется и по градиенту концентраций, и по градиенту электрического поля. Однако важным условием для диффузии веществ через мембраны являются физические свойства мембраны и, в частности, ее проницаемость для вещества. Например, ионы Na+, концентрация которого выше вне клетки, чем внутри ее, а внутренняя поверхность плазматической мембраны заряжена отрицательно, должны были бы легко диффундировать внутрь клетки. Однако скорость диффузии ионов Na+ через плазматическую мембрану клетки в покое ниже, чем ионов К+, который диффундирует по концентрационному градиенту из клетки, так как проницаемость мембраны в условиях покоя для ионов К+ выше, чем для ионов Na+.

Поскольку углеводородные радикалы фосфолипидов, формирующих бислой мембраны, обладают гидрофобными свойствами, то через мембрану могут легко диффундировать вещества гидрофобной природы, в частности легко растворимые в липидах (стероидные, тиреоидные гормоны, некоторые наркотические вещества и др.). Низкомолекулярные вещества гидрофильной природы, минеральные ионы диффундируют через пассивные ионные каналы мембран, формируемые каналообразующими белковыми молекулами, и, возможно, через дефекты упаковки в мембране фосфолииидных молекул, возникающие и исчезающие в мембране в результате тепловых флуктуаций.

Диффузия веществ в тканях может осуществляться не только через мембраны клеток, но и через другие морфологические структуры, например из слюны в дентинную ткань зуба через его эмаль. При этом условия для осуществления диффузии остаются теми же, что и через клеточные мембраны. Например, для диффузии кислорода, глюкозы, минеральных ионов из слюны в ткани зуба их концентрация в слюне должна превышать концентрацию в тканях зуба.

В нормальных условиях проходить в значительных количествах через фосфолипидный бислой путем простой диффузии могут неполярные и небольшие по размерам электронейтральные полярные молекулы. Транспорт существенных количеств других полярных молекул осуществляется белками-переносчиками. Если для трансмембранного перехода вещества необходимо участие переносчика, то вместо термина «диффузия» часто используют термин транспорт вещества через мембрану.

Облегченная диффузии , так же, как и простая «диффузия» вещества, осуществляется по градиенту его концентрации, но в отличие от простой диффузии в переносе вещества через мембрану участвует специфическая белковая молекула — переносчик (рис. 2).

Облегченная диффузия — это вид пассивного переноса ионов через биологические мембраны, который осуществляется по градиенту концентрации с помощью переносчика.

Перенос вещества с помощью белка-переносчика (транспортера) основан на способности этой белковой молекулы встраиваться в мембрану, пронизывая ее и формируя каналы, заполненные водой. Переносчик может обратимо связываться с переносимым веществом и при этом обратимо изменять свою конформацию.

Предполагается, что белок-переносчик способен находиться в двух конформационных состояниях. Например, в состоянии а этот белок обладает сродством с переносимым веществом, его участки для связывания вещества повернуты внутрь и он формирует пору, открытую к одной из сторон мембраны.

Рис. 2. Облегченная диффузия. Описание в тексте

Связавшись с веществом, белок-переносчик изменяет свою конформацию и переходит в состояние 6 . При этом конформационном превращении переносчик теряет сродство с переносимым веществом, оно высвобождается из связи с переносчиком и оказывается перемещенным в пору на другой стороне мембраны. После этого белок снова совершает возврат в состояние а. Такой перенос вещества белком-транспортером через мембрану называют унипортом.

Посредством облегченной диффузии могут транспортироваться такие низкомолекулярные вещества, как глюкоза, из интерстициальных пространств в клетки, из крови в мозг, реабсорбироваться некоторые аминокислоты и глюкоза из первичной мочи в кровь в почечных канальцах, всасываться из кишечника аминокислоты, моносахариды. Скорость транспорта веществ путем облегченной диффузии может достигать до 10 8 частиц за секунду через канал.

В отличие от скорости переноса вещества простой диффузией, которая прямо пропорциональна разности его концентраций по обе стороны мембраны, скорость переноса вещества при облегченной диффузии возрастает пропорционально увеличению разности концентраций вещества до некоторого максимального значения, выше которого она не увеличивается, несмотря на повышение разности концентраций вещества по обе стороны мембраны. Достижение максимальной скорости (насыщение) переноса в процессе облегченной диффузии объясняется тем, что при максимальной скорости в перенос оказываются вовлеченными все молекулы белков-переносчиков.

Обменная диффузия — при этом виде транспорта веществ может происходить обмен молекулами одного и того же вещества, находящимися по разные стороны мембраны. Концентрация вещества с каждой стороны мембраны остается при этом неизменной.

Разновидностью обменной диффузии является обмен молекулы одного вещества на одну или более молекул другого вещества. Например, в гладкомышечных клетках сосудов и бронхов, в сократительных миоцитах сердца одним из путей удаления ионов Са 2+ из клеток является обмен их на внеклеточные ионы Na+. На три иона входящего Na+ из клетки удаляется один ион Са 2+ . Создается взаимообусловленное (сопряженное) движение Na+ и Са 2+ через мембрану в противоположных направлениях (этот вид транспорта называют антипортом). Таким образом клетка освобождается от избыточного количества ионов Са 2+ , что является необходимым условием для расслабления гладких миоцитов или кардиомиоцитов.

Активный транспорт веществ

Активный транспорт веществ через — это перенос веществ против их градиентов, осуществляющийся с затратой метаболической энергии. Этот вид транспорта отличается от пассивного тем, что перенос осуществляется не по градиенту, а против градиентов концентрации вещества и на него используется энергия АТФ или другие виды энергии, на создание которых АТФ затрачивалась ранее. Если непосредственным источником этой энергии является АТФ, то такой перенос называют первично-активным. Если на перенос используется энергия (концентрационных, химических, электрохимических градиентов), ранее запасенная за счет работы ионных насосов, затративших АТФ, то такой транспорт называют вторично-активным, а также сопряженным. Примером сопряженного, вторично-активного транспорта являются абсорбция глюкозы в кишечнике и ее реабсорбция в почках с участием ионов Na и переносчиков GLUT1.

Благодаря активному транспорту могут преодолеваться силы не только концентрационного, но и электрического, электрохимического и других градиентов вещества. В качестве примера работы первично-активного транспорта можно рассмотреть работу Na+ -, К+ -насоса.

Активный перенос ионов Na + и К+ обеспечивается белком- ферментом — Na+ -, К+ -АТФ-азой, способной расщеплять АТФ.

Белок Na К -АТФ-аза содержится в цитоплазматической мембране практически всех клеток организма, составляя 10% и более от общего содержания белка в клетке. На работу этого насоса тратится более 30% всей метаболической энергии клетки. Na + -, К+ -АТФ-аза может находиться в двух конформационных состояниях — S1 и S2. В состоянии S1 белок обладает сродством с ионом Na и 3 иона Na присоединяются к трем высокоаффинным местам его связывания, повернутым внутрь клетки. Присоединение иона Na" стимулирует АТФ-азную активность, и в результате гидролиза АТФ Na+ -, К+ -АТФ-аза фосфорилируется за счет переноса на нее фосфатной группы и осуществляет конформационный переход из состояния S1 в состояние S2 (рис. 3).

В результате изменения пространственной структуры белка места связывания ионов Na поворачиваются на внешнюю поверхность мембраны. Аффинность мест связывания к ионам Na+ резко уменьшается, и он, высвободившись из связи с белком, оказывается перенесенным во внеклеточное пространство. В конформационном состоянии S2 повышается аффинность центров Na+ -, К-АТФ-азы к ионам К и они присоединяют два иона К из внеклеточной среды. Присоединение ионов К вызывает дефосфорилирование белка и его обратный конформационный переход из состояния S2 в состояние S1. Вместе с поворотом центров связывания на внутреннюю поверхность мембраны два иона К высвобождаются из связи с переносчиком и оказываются перенесенными внутрь. Подобные циклы переноса повторяются со скоростью, достаточной для поддержания в покоящейся клетке неодинакового распределения ионов Na+ и К+ в клетке и межклеточной среде и, как следствие, поддержания относительно постоянной разности потенциалов на мембране возбудимых клеток.

Рис. 3. Схематическое представление работы Na+ -, К + -насоса

Вещество строфантин (оуабаин), выделяемое из растения наперстянка, обладает специфической способностью блокировать работу Na + -, К+ — насоса. После его введения в организм в результате блокады выкачивания иона Na+ из клетки наблюдаются снижение эффективности работы Na+ -, Са 2 -обменного механизма и накопление в сократительных кардиомиоцитах ионов Са 2+ . Это ведет к усилению сокращения миокарда. Препарат применяется для лечения недостаточности насосной функции сердца.

Кроме Na"-, К + -АТФ-азы имеются еще несколько типов транспортных АТФ-аз, или ионных насосов. Среди них насос, осуществляющий транспорт прогонов водорода (митохондрии клеток, эпителий почечных канальцев, париетальные клетки желудка); кальциевые насосы (пейсмекерные и сократительные клетки сердца, мышечные клетки поперечно-полосатой и гладкой мускулатуры). Например, в клетках скелетных мышц и миокарда белок Са 2+ -АТФ-аза встроен в мембраны саркоплазматического ретикулума и благодаря его работе обеспечивается поддержание высокой концентрации ионов Са 2+ в его внутриклеточных хранилищах (цистерны, продольные трубочки саркоплазматического ретикулума).

В некоторых клетках силы трансмембранной разности электрических потенциалов и градиента концентрации натрия, возникающие в результате работы Na+-, Са 2+ -насоса, используются для осуществления вторично-активных видов переноса веществ через клеточную мембрану.

Вторично-активный транспорт характеризуется тем, что перенос вещества через мембрану осуществляется за счет градиента концентрации другого вещества, который был создан механизмом активного транспорта с затратой энергии АТФ. Различают две разновидности вторично активного транспорта: симпорт и антипорт.

Симпортом называют перенос вещества, который сопряжен с одновременным переносом другого вещества в том же направлении. Симпортным механизмом переносятся йод из внеклеточного пространства в тиреоциты щитовидной железы, глюкоза и аминокислоты при их всасывании из тонкой кишки в энтероциты.

Антипортом называют перенос вещества, который сопряжен с одновременным переносом другого вещества, но в обратном направлении. Примером антипортного механизма переноса является работа упоминавшегося ранее Na + -, Са 2+ — обменника в кардиомиоцитах, К+ -, Н+ -обменного механизма в эпителии почечных канальцев.

Из приведенных примеров видно, что вторично-активный транспорт осуществляется за счет использования сил градиента ионов Na+ или ионов К+. Ион Na+ или ион К перемещается через мембрану в сторону его меньшей концентрации и тянет за собой другое вещество. При этом обычно используется встроенный в мембрану специфический белок-переносчик. Например, транспорт аминокислот и глюкозы при их всасывании из тонкого кишечника в кровь происходит благодаря тому, что белок-переносчик мембраны эпителия кишечной стенки связывается с аминокислотой (глюкозой) и ионом Na+ и только тогда изменяет свое положение в мембране таким образом, что переносит аминокислоту (глюкозу) и ион Na+ в цитоплазму. Для осуществления такого транспорта необходимо, чтобы снаружи клетки концентрация иона Na+ была гораздо больше, чем внутри, что обеспечивается постоянной работой Na+, К+ — АТФ-азы и затратой метаболической энергии.

В транспорте ионов через плазмалемму принимают участие мембранные транспортные белки. Эти белки могут проводить в одном направлении одно вещество (унипорт) или несколько веществ одновременно (симпорт), а также вместе с импортом одного вещества выводить из клетки другое (антипорт). Глюкоза, например, может входить в клетки симпортно вместе с ионом Nа+. Транспорт ионов может происходить по градиенту концентраций, т. е. пассивно, без дополнительной затраты энергии. В случае пассивного транспорта некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые растворенные молекулы проходят сквозь мембрану за счет простой диффузии по градиенту концентрации. Часть этих каналов открыта постоянно, другие могут закрываться или открываться в ответ либо на связывание с сигнальными молекулами, либо на изменение внутриклеточной концентрации ионов. В других случаях специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану (облегченная диффузия). Концентрация ионов в цитоплазме клеток резко отличается не только от концентрации во внешней среде, но даже от плазмы крови, омывающей клетки в организме высших животных. Суммарная концентрация одновалентных катионов как внутри клеток, так и снаружи практически одинакова (150 мМ), изотонична. Но в цитоплазме концентрация К+ почти в 50 раз выше, а Nа+ ниже, чем в плазме крови, причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +2 o С, и через некоторое время концентрации К+ и Nа+ по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип переноса веществ носит название активного транспорта, и он осуществляется с помощью белковых ионных насосов. В плазматической мембране находится двухсубъединичная молекула (К+ + Nа+) - насоса, которая одновременно является и АТФазой. Этот насос откачивает за один цикл 3 иона Nа+ и закачивает в клетку 2 иона К+ против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Nа+ переносится через мембрану из клетки, а К+ получает возможность связаться с белковой молекулой и затем переноситься в клетку. В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Мg 2+ и Са +, также с затратой АТФ. В сочетании с активным транспортом ионов через плазматическую мембрану проникают различные сахара, нуклеотиды и аминокислоты. Так, активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Nа+, будет зависеть от активности (К+, Nа+) - насоса. Если этот насос заблокировать, то скоро разность концентрации Nа+ по обе стороны мембраны исчезнет, при этом диффузия Nа+ внутрь клетки сократится, и одновременно прекратится поступление глюкозы в клетку. Как только восстанавливается работа (К+ + Nа+)-АТФазы и создается разность концентрации ионов, то сразу возрастает диффузный поток Nа+ и одновременно транспорт глюкозы. Подобно этому

осуществляется транспорт аминокислот, которые переносятся через мембрану специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы. Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода. Само по себе участие специальных мембранных белков в пассивном или активном транспорте низкомолекулярных соединений показывает высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки «узнают» данный ион, взаимодействуют с ним, связываются специфически, меняют свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Рецепторная функция мембраны особенно проявляется при поглощении клеткой биополимеров.

Межклеточные контакты.

У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли, поддержание которых осуществляется разными путями. В зародышевых, эмбриональных тканях, особенно на ранних стадиях развития, клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, сцепления) клеток может определяться свойствами их поверхности, которые специфически взаимодействуют друг с другом. Иногда, особенно в однослойных эпителиях, плазматические мембраны соседних клеток образуют множественные впячивания, напоминающие плотничий шов. Это создает дополнительную прочность межклеточному соединению. Кроме такого простого адгезивного (но специфического) соединения есть целый ряд специальных межклеточных структур, контактов или соединений, которые выполняют определенные функции. Это запирающие, заякоривающие и коммуникационные соединения. Запирающее, или плотное, соединение характерно для однослойных эпителиев. Это зона, где внешние слои двух плазматических мембран максимально сближены. Часто видна трехслойность мембраны в этом контакте: два внешних осмиофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2 - 3 нм. На плоскостных препаратах разломов плазматической мембраны в зоне плотного контакта с помощью метода замораживания и скалывания было обнаружено, что точки соприкосновения мембран представляют собой глобулы (вероятнее всего, специальные интегральные белки плазматической мембраны), выстроенные рядами. Такие ряды глобул, или полоски, могут пересекаться так, что образуют на поверхности скола как бы решетку, или сеть, Очень характерна эта структура для эпителиев, особенно железистых и кишечных. В последнем случае плотный контакт образует сплошную зону слияния плазматических мембран, опоясывающую клетку в апикальной (верхней, смотрящей в просвет кишечника) ее части. Таким образом, каждая клетка пласта как бы обведена лентой этого контакта. Такие структуры при специальных окрасках можно видеть и под световым микроскопом. Они получили у морфологов название замыкающих пластинок. В данном случае роль замыкающего плотного контакта заключается не только в механическом соединении клеток друг с другом. Эта область контакта плохо проницаема для макромолекул и ионов, и тем самым она запирает, перегораживает межклеточные полости, изолируя их (и вместе с ними собственно внутреннюю среду организма) от внешней среды (в данном случае - просвет кишечника). Хотя все плотные контакты являются барьерами для макромолекул, их проницаемость для малых молекул различна в разных эпителиях. Заякоривающне (сцепляющие) соединения, или контакты, так называются потому, что они не только соединяют плазматические мембраны соседних клеток, но и связываются с фибриллярными элементами цитоскелета. Для этого типа соединений характерно наличие двух типов белков. Один из них представлен трансмембранными линкерными (связующими) белками, которые участвуют или в собственно межклеточном соединении или в соединении плазмалеммы с компонентами внеклеточного матрикса (базальная мембрана эпителиев, внеклеточные структурные белки соединительной ткани). Ко второму типу относятся внутриклеточные белки, соединяющие, или заякоривающие, мембранные элементы такого контакта с цитоплазматическими фибриллами цитоскелета. Межклеточные точечные сцепляющие соединения обнаружены во многих неэпителиальных тканях, но более отчетливо описана структура сцепляющих (адгезивных) лент , или поясков, в однослойных эпителиях. Эта структура опоясывает весь периметр эпителиальной клетки, подобно тому как это происходит в случае плотного соединения. Чаще всего такой поясок, или лента, лежит ниже плотного соединения. В этом месте плазматические мембранные сближены, и даже несколько раздвинуты расстояние 25 - 30 нм, и между ними видна зона повышенной плотности. Это не что иное, как места взаимодействия трансмембранных гликопротеидов, которые при участии ионов Са++ специфически сцепляются друг с другом и обеспечивают механическое соединение мембран двух соседних клеток. Линкерные белки относятся к кадгеринам - белкам- рецепторам, обеспечивающим специфическое узнавание клетка- ми однородных мембран. Разрушение слоя гликопротеидов приводит к обособлению отдельных клеток и разрушению эпителиального пласта. С цитоплазматической стороны около мембраны видно скопление плотного вещества, к которому примыкает слой тонких (6 - 7 нм) филаментов, лежащих вдоль плазматической мембраны в виде пучка, идущего по всему периметру клетки. Тонкие филаменты относятся к актиновым фибриллам; они связываются с плазматической мембраной посредством белка винкулина, образующего плотный околомембранный слой. Функциональное значение ленточного соединения заключается не только в механическом сцеплении клеток друг с другом: при сокращении актиновых филаментов в ленте может изменяться форма клетки. Фокальные контакты, или бляшки сцепления , встречаются у многих клеток и особенно хорошо изучены у фибробластов. Они построены по общему плану со сцепляющими лентами, но выражены в виде небольших участков - бляшек на плазмалемме. В этом случае трансмембранные линкерные белки специфически связываются с белками внеклеточного матрикса, например с фибронектином. Со стороны цитоплазмы эти же гликопротеиды связаны с примембранными белками, куда входит и винкулин, который в свою очередь связан с пучком актиновых филаментов. Функциональное значение фокальных контактов заключается как в закреплении клетки на внеклеточных структурах, так и в создании механизма, позволяющего клеткам перемещаться. Десмосомы , имеющие вид бляшек или кнопок, также соединяют клетки друг с другом. В межклеточном пространстве здесь также виден плотный слой, представленный взаимодействующими интегральными мембранными гликопротеидами - десмоглеинами, которые также в зависимости от ионов Са++ сцепляют клетки друг с другом. С цитоплазматической стороны к плазмолемме прилежит слой белка-десмоплакина, с которым связаны промежуточные филаменты цитоскелета. Десмосомы встречаются чаще всего в эпителиях, в этом случае промежуточные филаменты содержат кератины. Клетки сердечной мышцы, кардиомиоциты, содержат десминовые фибриллы в составе десмосом. В энтотелии сосудов в состав десмосом входят виментиновые промежуточные филаменты. Полудесмосомы - сходны по строению с десмосомой, но представляют собой соединение клеток с межклеточными структурами. Функциональная роль десмосом и полудесмосом сугубо механическая: они сцепляют клетки друг с другом и с подлежащим внеклеточным матриксом. В отличие от плотного контакта все типы сцепляющих контактов проницаемы для водных растворов и не играют никакой роли в ограничении диффузии. Щелевые контакты считаются коммуникационными соединениями клеток. Эти структуры участвуют в прямой передаче химических веществ из клетки в клетку. Для этого типа контактов характерно сближение плазматических мембран двух соседних клеток на расстояние 2 - 3 нм. Использование метода замораживания - скалывания. Оказалось, что на сколах мембран зоны щелевых контактов (размером от 0,5 до 5 мкм) усеяны частицами 7 - 8 нм в диаметре, расположенными гексагонально с периодом 8 - 10 нм и имеющими в центре Канал около 2 ям шириной. Эти частицы получили название коннексонов. В зонах щелевого контакта может быть от 10 - 20 до нескольких тысяч коннексонов в зависимости от функциональных особенностей клеток. Коннексоны были выделены препаративно. Они состоят из шести субъединиц коннектина - белка. Объединяясь друг с другом, коннектины образуют цилиндрический агрегат - коннексон, в центре которого располагается канал. Отдельные коннексоны встроены в плазматическую мембрану так, что прободают ее насквозь. Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки, так что каналы двух коннексонов образуют единое целое. Коннексоны играют роль прямых межклеточных каналов, по которым ионы и низкомолекулярные вещества могут диффундировать из клетки в клетку. Коннексоны могут закрываться, изменяя диаметр внутреннего канала, и тем участвовать в регуляции транспорта молекул между клетками. Ни белки, ни нуклеиновые кислоты через щелевые контакты проходить не могут. Способность щелевых контактов пропускать низкомолекулярные соединения лежит в основе быстрой передачи электрического импульса (волны возбуждения) от клетки к клетке без участия нервного медиатора. Синаптический контакт (синапсы) . Синапсы - участки контактов двух клеток, специлизированных для односторонней передачи возбуждения или торможения от одного элемента к другому. Этот тип контактов характерен для нерв- ной ткани и встречается как между двумя нейронами, так и между нейронами и каким-либо иным элементом - рецептором или эффектором. Примером синаптического контакта является также нервно-мышечное окончание. Межнейронные синапсы обычно имеют вид грушевидных расширений (бляшек). Синаптические бляшки могут контактировать как с телом другого нейрона, так и с его отростками. Периферические отростки нервных клеток (аксоны) образуют специфические контакты с клетками-эффекторами (мышечными или железистыми) или клетками-рецепторами. Следовательно, синапс - это специализированная структура, образующаяся между участками двух клеток (так же как и десмосома). В местах синаптических контактов мембраны клеток разделены межклеточным пространством - синаптической щелью шириной около 20 - 30 нм. Часто в просвете щели виден тонколокнистый, перпендикуляр- но расположенный по отношению к мембранам материал. Мембрана одной клетки, передающей возбуждение, в области синаптического контакта называется пресинаптической, мембрана другой клетки, воспринимающей импульс, - постсинаптической. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей - синаптических пузырьков, заполненных медиаторами. Содержимое синаптических пузырьков в момент прохождения нервного импульса выбрасывается путем экзоцитоза в синаптическую щель. Постсинаптическая мембрана часто выглядит толще обычных мембран вследствие скопления около нее со стороны цитоплазмы множества тонких фибрилл. Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 20 - 40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки. Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления, когда строится первичная клеточная оболочка. У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку). При старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки. По плазмодесмам могут перемещаться липидные капли. Через плазмодесмы происходит заражение клеток растительными вирусами.

Активным транспортом называют процессы, в которых молекула должна двигаться через мембрану независимо от направления ее концентрационного градиента. Чаще всего это происходит и.ч области с более низкой концентрацией в область с более высокой и сопровождается увеличением свободной энергии, которое составляет 5,71 lgC2/C| кДж-моль-1.

Как указывалось раннее это процесс переноса веществ из мест с меньшим значением электрохимического потенциала в места с его большим значением.

Так как активный транспорт в мембране сопровождается ростом энергии Гиббса, он не может идти самопроизвольно, т. е. для такого процесса необходимо сопряжение с какой-нибудь самопроизвольно протекающей реакцией. В целом, это может осуществляться двумя путями: 1) в сопряжении с процессом гидролиза АТФ, т. е. за счет затраты энергии, запасенной в макроэргических связях; 2) опосредованный мембранным потенциалом и/или градиентом концентрации ионов при наличии и мембране специфических переносчиков.

В первом случае транспорт осуществляется с помощью электрогенных ионных насосов, работающих за счет свободной энергии гидролиза АТФ. Их относят к специальных систем интегральных белков и называют транспортными АТФазами. В настоящее время известны три типа электрогенных ионных насосов, осуществляющих перенос ионов через мембрану: К+ - Na+ - АТФазы, за счет энергии, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносится два иона калия и выкачиваются три иона натрия; в Са2+ - АТФазе за счет энергии гидролиза АТФ переносится два иона кальция; в Н+ - помпе - два протона.

Во втором случае транспорт веществ является вторичным, для которого глубоко исследованы три схемы.

Однонаправленный перенос иона в комплексе со специфическим переносчиком получил название унипорта. При этом через мембрану переносится заряд либо комплексом если молекула переносчика электронейтральна, либо пустым переносчиком, если транспорт обеспечивается заряженным переносчиком. Результатом переноса будет накопление ионов за счет снижения мембранного потенциала. Такой эффект наблюдается при накоплении ионов калия в присутствии валиномицина в энергизированных митохондриях.

Встречный перенос ионов с участием одноместной молекулы - переносчика получил название антипорта. Предполагается при этом, что молекула переносчика образует прочный комплекс с каждым из переносимых ионов. Перенос осуществляется в два этапа: сначала один ион пересекает мембрану слева направо, затем второй ион - в обратном направлении. Мембранный потенциал при этом не меняется. По-видимому, движущей силой в этом процессе является разность концентраций одного из переносимых ионов. Если исходно разность концентрации второго иона отсутствовала, то результатом переноса станет накопление второго иона за счет уменьшения разности концентраций первого. Классическим примером антипорта служит перенос через клеточную мембрану ионов калия и водорода с участием антибиотика нигирицина. Необходимо отметить, что большинство бел- ков-переносчиков функционируют по типу антипорта, т. е. движение вещества через мембрану становится возможным только в обмен на какое-либо довольно специфическое вещество, имеющее тот же заряд, но двигающееся в обратном направлении.

Таким образом, выход какого-либо основного компонента клетки по концентрационному градиенту, может управлять движением идущего навстречу вещества против его градиента и совершать «работу» до тех пор, пока обе движущие силы не уравновесятся.

Совместный однонаправленный перенос веществ с участием двухместного переносчика называеться симпортом. Предполагается, что в мембране могут находится две электронейтраль- ные частицы: переносчик в комплексе с катионом и анионом и пустой переносчик. Поскольку мембранный потенциал в такой системе переноса не изменяется, то причиной транспорта может быть разность концентраций одного из ионов. Считается, что по схеме симпорта следует, что этот процесс должен сопровождаться значительным смещением осмотического равновесия, поскольку в одном цикле переносятся через мембрану две частицы в одном направлении.

Благодаря наличию достаточно хорошо разработанных(теорий, механизмов переноса ионов и эндогенных органических веществ в клетке стало возможным интерпретировать данные, полученные в экспериментах с лекарствами (раздел 6.3.3).

По аналогии с рис. 6.10 активный транспорт можно представить таким образом, как показано на рис. 6.11.

В этом случае переносчик С образует на внешней стороне мембраны с лекарством (Л) комплекс СА. Он проникает в мембрану, отщепляя Л с ее другой стороны. В случае активного транспорта концентрация Л на внутренней стороне мембраны может быть на много больше концентрации на наружной. В отличии от пассивного транспорта (рис. 6.10) комплекс СА используя энергию АТФ, превращается в комплекс С"А, который легко отщепляет Л (рис. 6.11). Учитывая необходимость энергетических затрат для осуществления транспорта СА на противоположную сторону мембраны, можно считать, что /(, (константа расщепления) на внутренней стороне больше К0. Это так называемое ассиметричное расщепление комплекса лекарство-переносчик.

Внешняя водная фаза

Концентрация [Л]0 Активность (Л)0

В живых организмах активные транспортные механизмы широко распространены и их можно рассматривать как одну из фундаментальных функций клетки. Например, в клетках имеется высокая концентрация калия и низкая концентрация натрия в отличии от внеклеточного пространства, где эти ионы находятся в обратном взаимоотношении. Мембраны свободно проходимы для обоих ионов и ассиметрическое распределение поддерживается путем постоянного «накачивания» натрия из клетки наружу и калия внутрь. .Секреция НС1 в желудке является настоящим активным транспортом Н+ и СГ. Йод концентрируется в щитовидной железе по аналогичному механизму. Сахара переносятся против более высокой концентрации в кишках и проксимальных почечных канальцах. Аналогично ведут себя аминокислоты в кишках, почках, мышцах и мозге. Секреция органических кислот (napa-аминобензойной, гиппу- ровой) почечными канальцами является активным транспортным процессом .

Механизм активного транспорта высокоспецифичен, так как он был создан природой для удовлетворения биологической потребности организма в необходимых питательных веществах или выведения из него продуктов их метаболизма. Что касается лекарственных средств, подвергающихся активному транспорту, то они в этом случае должны быть близки по химическому строению к естественным веществам организма. Путем активного транспорта в кишечнике всасывается аналог пиримидина фторафур и железо. С помощью того же механизма леводофа проникает через гематоэнцефалический барьер. В почечных канальцах секретируются лекарства, относящиеся к органическим кислотам и основаниям.

Подводя итог рассмотрению механизмов трансмембранного транспорта веществ необходимо еще раз подчеркнуть, что в процессе жизнедеятельности границы клетки пересекают разнообразные вещества, потоки которых эффективно регулируются. С этой задачей справляется клеточная мембрана с встроенными в нее транспортными системами, включающими ионные насосы, систему молекул-переносчиков и высокоселективные ионные каналы.

Такое обилие систем переноса на первый взгляд кажется излишним, ведь работа только ионных насосов позволяет обеспечить характерные особенности биологического транспорта: нысокую избирательность, перенос веществ против сил диффузии и электрического поля. Парадокс заключается, однако, в том, что количество потоков, подлежащих регулированию, бесконечно велико, в то время как насосов всего три. В этом случае особое значение приобретают механизмы ионного сопряжения, получившие название вторичного активного транспорта, в которых важную роль играют диффузные процессы. Таким образом, сочетание активного транспорта веществ с явлениями диффузионного переноса в клеточной мембране - та основа, которая обеспечивает жизнедеятельность клетки.

error: