Показательные неравенства примеры и решение подробное описание. Решение показательных неравенств: основные способы

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .

Основные свойства показательной функции y = a x :

График показательной функции

Графиком показательной функции является экспонента :

Графики показательных функций (экспоненты)

Решение показательных уравнений

Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

Title="Rendered by QuickLaTeX.com">

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

Title="Rendered by QuickLaTeX.com">

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Ответ: x = 6.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение: представим исходное неравенство в виде:

Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Воспользуемся подстановкой:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t :

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

t , находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.


Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Показательными уравнениями и неравенствами считают такие уравнения и неравенства, в которых неизвестное содержится в показателе степени.

Решение показательных уравнений часто сводится к решению уравнения а х = а b , где а > 0, а ≠ 1, х – неизвестное. Это уравнение имеет единственный корень х = b, так как справедлива следующая теорема:

Теорема. Если а > 0, а ≠ 1 и а х 1 = а х 2 , то х 1 = х 2 .

Обоснуем рассмотренное утверждение.

Предположим, что равенство х 1 = х 2 не выполняется, т.е. х 1 < х 2 или х 1 = х 2 . Пусть, например, х 1 < х 2 . Тогда если а > 1, то показательная функция у = а х возрастает и поэтому должно выполняться неравенство а х 1 < а х 2 ; если 0 < а < 1, то функция убывает и должно выполняться неравенство а х 1 > а х 2 . В обоих случаях мы получили противоречие условию а х 1 = а х 2 .

Рассмотрим несколько задач.

Решить уравнение 4 ∙ 2 х = 1.

Решение.

Запишем уравнение в виде 2 2 ∙ 2 х = 2 0 – 2 х+2 = 2 0 , откуда получаем х + 2 = 0, т.е. х = -2.

Ответ. х = -2.

Решить уравнение 2 3х ∙ 3 х = 576.

Решение.

Так как 2 3х = (2 3) х = 8 х, 576 = 24 2 , то уравнение можно записать в виде 8 х ∙ 3 х = 24 2 или в виде 24 х = 24 2 .

Отсюда получаем х = 2.

Ответ. х = 2.

Решить уравнение 3 х+1 – 2∙3 х - 2 = 25.

Решение.

Вынося в левой части за скобки общий множитель 3 х - 2 , получаем 3 х - 2 ∙ (3 3 – 2) = 25 – 3 х - 2 ∙ 25 = 25,

откуда 3 х - 2 = 1, т.е. х – 2 = 0, х = 2.

Ответ. х = 2.

Решить уравнение 3 х = 7 х.

Решение.

Так как 7 х ≠ 0, то уравнение можно записать в виде 3 х /7 х = 1, откуда (3/7) х = 1, х = 0.

Ответ. х = 0.

Решить уравнение 9 х – 4 ∙ 3 х – 45 = 0.

Решение.

Заменой 3 х = а данное уравнение сводится к квадратному уравнению а 2 – 4а – 45 = 0.

Решая это уравнение, находим его корни: а 1 = 9, а 2 = -5, откуда 3 х = 9, 3 х = -5.

Уравнение 3 х = 9 имеет корень 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.

Ответ. х = 2.

Решение показательных неравенств часто сводится к решению неравенств а х > а b или а х < а b . Эти неравенства решаются с помощью свойства возрастания или убывания показательной функции.

Рассмотрим некоторые задачи.

Решить неравенство 3 х < 81.

Решение.

Запишем неравенство в виде 3 х < 3 4 . Так как 3 > 1, то функция у = 3 х является возрастающей.

Следовательно, при х < 4 выполняется неравенство 3 х < 3 4 , а при х ≥ 4 выполняется неравенство 3 х ≥ 3 4 .

Таким образом, при х < 4 неравенство 3 х < 3 4 является верным, а при х ≥ 4 – неверным, т.е. неравенство
3 х < 81 выполняется тогда и только тогда, когда х < 4.

Ответ. х < 4.

Решить неравенство 16 х +4 х – 2 > 0.

Решение.

Обозначим 4 х = t, тогда получим квадратное неравенство t2 + t – 2 > 0.

Это неравенство выполняется при t < -2 и при t > 1.

Так как t = 4 х, то получим два неравенства 4 х < -2, 4 х > 1.

Первое неравенство не имеет решений, так как 4 х > 0 при всех х € R.

Второе неравенство запишем в виде 4 х > 4 0 , откуда х > 0.

Ответ. х > 0.

Графически решить уравнение (1/3) х = х – 2/3.

Решение.

1) Построим графики функций у = (1/3) х и у = х – 2/3.

2) Опираясь на наш рисунок, можно сделать вывод, что графики рассмотренных функций пересекаются в точке с абсциссой х ≈ 1. Проверка доказывает, что

х = 1 – корень данного уравнения:

(1/3) 1 = 1/3 и 1 – 2/3 = 1/3.

Иными словами, мы нашли один из корней уравнения.

3) Найдем другие корни или докажем, что таковых нет. Функция (1/3) х убывающая, а функция у = х – 2/3 возрастающая. Следовательно, при х > 1 значения первой функции меньше 1/3, а второй – больше 1/3; при х < 1, наоборот, значения первой функции больше 1/3, а второй – меньше 1/3. Геометрически это означает, что графики этих функций при х > 1 и х < 1 «расходятся» и потому не могут иметь точек пересечения при х ≠ 1.

Ответ. х = 1.

Заметим, что из решения этой задачи, в частности, следует, что неравенство (1/3) х > х – 2/3 выполняется при х < 1, а неравенство (1/3) х < х – 2/3 – при х > 1.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим, как решать показательные неравенства, содержащих степени с разными основаниями. Решение таких неравенств аналогично решению соответствующих .

{5^{{x^2} - x - 1}} - {2^{{x^2} - x}}\]" title="Rendered by QuickLaTeX.com">

Группируем степени с одинаковыми основаниями. Удобнее для этого развести их по разные стороны неравенства:

Title="Rendered by QuickLaTeX.com">

Из каждой пары степеней выносим за скобки общий множитель — степень с меньшим показателем. Вынести за скобки общий множитель- значит, каждое слагаемое разделить на этот множитель. При делении степеней с одинаковыми основаниями основание оставляем прежним, а показатели вычитаем:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Делить можно сразу на 20 (20=4∙5), но практика показывает, что деление в два этапа позволяет избежать возможных ошибок:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Так как основание 2/5<1, показательная функция

убывает, поэтому знак неравенства между показателями степеней изменяется на противоположный:

Квадратичное неравенство решим методом интервалов . Нули функции, стоящей в левой части неравенства — x1=-1; x2=2. Отмечаем их на числовой прямой.

Для проверки знака возьмем нуль: 0²-0-2=-2, в промежуток, которому принадлежит нуль, ставим «-«. Остальные знаки расставляем в шахматном порядке. Так как решаем неравенство, в котором левая часть меньше нуля, выбираем промежуток со знаком «-«.

Ответ: x ∈ (-1; 2).

Вариант неравенств такого вида — все степени имеют одинаковые основания, но отличаются коэффициентами при x в показателях.

В левой части выносим за скобки степень с наименьшим показателем

Title="Rendered by QuickLaTeX.com">

Пришли к показательному неравенству . Так как основание 7>1, функция

возрастает, знак неравенства между показателями не изменяется:

Чтобы решить это неравенство методом интервалов перенесем все слагаемые в левую часть и приведём дроби к

Здравствуйте! Дорогие мои ученики, в этой статье мы научимся с вами решать показательные неравенства.

Каким бы сложным не показалось вам показательное неравенство, после некоторых преобразований (о них мы поговорим чуть позже) все неравенства сводятся к решению простейших показательных неравенств :

а х > b , a x < b и a x ≥ b , a x ≤ b .

Давайте попробуем разобраться как же решаются такие неравенства.

Мы рассмотрим решение строгих неравенств . Отличие при решении нестрогих неравенств заключается только в том, что полученные соответствующие корни включаются в ответ.

Пусть надо решить неравенство вида а f (x) > b , где a>1 и b>0 .

Посмотрите на схему решения таких неравенств (рисунок 1):

Сейчас рассмотрим конкретный пример. Решить неравенство: 5 х – 1 > 125 .

Так как 5 > 1 и 125 > 0, то
х – 1 > log 5 125, то есть
х – 1 > 3,
х > 4.

Ответ: (4; +∞) .

А каким же будет решение этого же неравенства а f (x) >b , если 0 и b>0 ?

Итак, схема на рисунке 2

Пример: Решить неравенство (1/2) 2x - 2 4

Применяя правило (рисунок 2), получаем
2х – 2 ≤ log 1/2 4,
2х – 2 ≤ –2,
2х ≤ 0,
х ≤ 0.

Ответ: (–∞; 0] .

Снова рассмотрим это же неравенство а f (x) > b , если a>0 и b<0 .

Итак, схема на рисунке 3:


Пример решения неравенства (1/3) х + 2 > –9 . Как мы замечаем, какое бы число мы не подставили вместо х, (1/3) х + 2 всегда больше нуля.

Ответ: (–∞; +∞) .

А как же решаются неравенства вида а f (x) < b , где a>1 и b>0 ?

Схема на рисунке 4:

И следующий пример: 3 3 – х ≥ 8 .
Поскольку 3 > 1 и 8 > 0, то
3 – х > log 3 8, то есть
–х > log 3 8 – 3,
х < 3 – log 3 8.

Ответ: (0; 3–log 3 8) .

Как же измениться решение неравенства а f (x) < b , при 0 и b>0 ?

Схема на рисунке 5:

И следующий пример: Решить неравенство 0,6 2х – 3 < 0,36 .

Cледуя схеме на рисунке 5, получаем
2х – 3 > log 0,6 0,36 ,
2х – 3 > 2,
2х > 5,
х > 2,5

Ответ: (2,5; +∞) .

Рассмотрим последнюю схему решения неравенства вида а f (x) < b , при a>0 и b<0 , представленную на рисунке 6:

Например, решим неравенство:

Замечаем, что какое бы число мы не подставили вместо х, левая часть неравенства всегда больше нуля, а у нас это выражение меньше -8, т.е. и нуля, значит решений нет.

Ответ: решений нет .

Зная как решаются простейшие показательные неравенства, можно приступить и к решению показательных неравенств .

Пример 1.

Найти наибольшее целое значение х, удовлетворяющее неравеству

Так как 6 х больше нуля (ни при каком х знаменатель в ноль не обращается), умножим обе части неравенства на 6 х, получим:

440 – 2· 6 2х > 8, тогда
– 2· 6 2х > 8 – 440,
– 2· 6 2х > – 332,
6 2х < 216,
2х < 3,

x < 1,5. Наибольшее целое число из помежутка (–∞; 1,5) это число 1.

Ответ: 1 .

Пример 2 .

Решить неравенство 2 2 x – 3·2 x + 2 ≤ 0

Обозначим 2 х через у, получим неравенство у 2 – 3у + 2 ≤ 0, решим это квадратное неравенство.

у 2 – 3у +2 = 0,
у 1 = 1 и у 2 = 2.

Ветви параболы направлены вверх, изобразим график:

Тогда решением неравенства будет неравенство 1 < у < 2, вернемся к нашей переменной х и получим неравенство 1< 2 х < 2, решая которое и найдем ответ 0 < x < 1.

Ответ: (0; 1) .

Пример 3 . Решите неравенство 5 x +1 – 3 x +2 < 2·5 x – 2·3 x –1
Соберем выражения с одинаковыми основаниями в одной части неравенства

5 x +1 – 2·5 x < 3 x +2 – 2·3 x –1

Вынесем в левой части неравенства за скобки 5 x , а в правой части неравенства 3 х и получим неравенство

5 х (5 – 2) < 3 х (9 – 2/3),
3·5 х < (25/3)·3 х

Разделим обе части неравенства на выражение 3·3 х, знак неравенства не изменится, так как 3·3 х положительное число, получим неравенство:

х < 2 (так как 5/3 > 1).

Ответ: (–∞; 2) .

Если у вас возникнут вопросы по решению показательных неравенств или вы захотите попрактиковаться в решении подобных примеров, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

error: