Поляризационные микроскопы: особенности и принцип работы. Поляризационная микроскопия в гистологии Метод замораживания – скалывания

Предположим, у вас есть пара сломанных поляризационных стёкол (поляризаторов). Если вы возьмёте одно стекло и повернёте его по отношению к другому, вы получите темноту. Степень непрозрачности зависит от качества поляризаторов.

Подавление 95-98 % света - превосходный показатель; если он намного меньше, появляется грязно-серый оттенок, Взаимное положение поляризаторов при получении тёмного поля называется скрещенным, при получении наиболее светлого ноля - параллельным.

Перед тем как обратиться к поляризационной микроскопии, давайте вернёмся к упомянутому выше патологу.

Добавим в его светлопольный или фазовоконтрастный микроскоп между бинокулярной насадкой и корпусом микроскопа устройство, которое позволит вводить поляризационный элемент (анализатор) в оптический путь. Поместим другой поляризационный элемент (поляризатор) под конденсор и будем поворачивать его до получения полной темноты (анализатор и поляризатор скрещены); зафиксируем при этом их положение. Вставим в это устройство (между бинокулярной насадкой и корпусом микроскопа) выдвижной держатель с компенсатором - красной пластинкой первого порядка. Допустим, патолог исследует препарат ткани и замечает объект, похожий на кристалл. Он устанавливает анализатор, поляризатор поворачивает до скрещенного положения и рассматривает объект. Если это кристалл или кристаллическое образование, то оно светится, как если бы за полупрозрачным экраном был включён осветитель. Пока ещё патолог не может определить, кристалл ли это мочевой кислоты или кальция. Он вводит в ход лучей красную пластинку первого порядка и поворачивает её из одного установленного положения в другое: кристалл становится или красным, или зелёным. Таким образом можно определить природу кристалла. Затем патолог убирает из оптического пути анализатор и, при желании, поляризатор и продолжает работу (изучаемая область препарата остаётся в поле зрения).

Теперь обратим внимание на поляризационный микроскоп. Он включает многие компоненты, которые присутствуют в обычном светлопольном микроскопе, поскольку предполагает исследование препарата в светлом иоле между поляризующими элементами.

Довольно часто, особенно при обучении студентов, используют монокулярные поляризационные микроскопы по причине их низкой стоимости. Профессора предпочитают бинокулярные модели. В бинокулярной насадке может быть установлена либо фиксированная, либо с возможностью фокусировки линза Бертрана, необходимая для исследования

(её функции описаны ниже). Между насадкой и корпусом находится деталь, в которой располагается анализатор, и прорезь для установки компенсатора.

Микроскоп имеет круглый и вращаемый предметный столик, что позволяет рассматривать препарат, поворачивая его между скрещенными анализатором и поляризатором. Столик также оборудован шкалой для измерения его поворота в градусах и угловых минутах. Под предметным столиком (обычно под конденсором) находится поворачиваемый поляризатор с фиксацией его положения под 0, 45° и 90° к положению анализатора. Разумеется, в микроскоп установлена апертурная диафрагма и, как правило, держатель светофильтров.

В окуляре моно- или бинокулярной насадки есть перекрестие. Все центрирование проводится относительно этого перекрестия, препарат также поворачивается вокруг центра этого перекрестия.

Отличие механического предметного столика в том, что он должен быть низко расположен, чтобы при повороте об него не ударялись объективы. Очень часто это измерительный столик, который при перемещении в направлении восток - запад или север - юг последовательно фиксируется через заданные промежутки. Представьте себе шарик, который попадает в бороздку, - так работает механизм фиксации. Можно взять предмет острее шарика - эффект будет тот же. Когда вы поворачиваете объективы, механизм фиксации удерживает каждый объектив в оптическом ходе лучей.

Для подсчёта различных компонентов на тонком срезе им на счётчике присваивают номера от 1 до 9. Номер 10 предназначен для выбросов или суммирования. Исследователь перемещает препарат до фиксации столика и смотрит, находится ли один из 9 компонентов на перекрестии. Если там нет ни одного из них, то выбирают номер 10. При подсчёте материала на счётчике нужно указать число каждого из компонентов и всего остального на номере 10. После просмотра всего препарата можно рассчитать процентное содержание любого из 9 компонентов материала.

Компенсатор устанавливается в микроскопе под углом 45° к направлениям север - юг и восток - запад.

Большинство компонентов видны одинаково вне зависимости от того, как они расположены по отношению к компенсатору, но некоторые требуют поворота, и это ещё одна причина, по которой столик должен быть вращаемым. Мы не будем углубляться в описание функций различных компенсаторов или клиньев, так как вы можете приобрести специальную книгу по этому вопросу. Мы лишь упомянем некоторые названия: пластина в 1/4 длины волны - кварцевый клин, который может иметь 6, 30 или 120 порядков; красная пластинка первого порядка (у неё есть три других названия, позволяющие определить возраст тех, кто их использует: пластина замедления света, чувствительная тоновая пластинка и гипсовая пластина, самая старая).

Рассмотрим понятие «порядок». Когда свет преломляется через призму, становятся видны все цвета спектра, затем они становятся все бледнее (третий, четвёртый и т. д. наборы цветов-порядков). Нулевой порядок - это чёрный свет в самом начале спектра. Красная пластинка первого порядка, как и следует из названия, эквивалентна красному в первом порядке цветов.

Линза Бертрана в комбинации с окуляром даёт вспомогательную визирную трубку, позволяющую рассматривать интерференционные фигуры в выходном зрачке микрообъектива в то время, когда сам микроскоп сфокусирован на определённое зерно препарата. Если геологу необходимо идентифицировать материал, он поворачивает тонкий срез минерала между скрещенными поляризатором и анализатором. При этом видны 2 цвета (и только 2), а для превращения одного цвета в другой нужен специфический угол поворота препарата. Таким образом можно идентифицировать большинство минералов. Однако некоторые минералы так схожи по параметрам цвета и углам поворота, что интерференционная картина - единственный способ их идентифицировать.

Петрография изучает геологию нефти. У петрографического микроскопа нет линзы Бертрана, поскольку его пользователям интерференционная картина не нужна.

Стандартная геологическая работа выполняется на тонком шлифе. Он представляет собой тонкий срез камня, отшлифованный, заключенный в эпоксидной смоле на предметное стекло размером 1x2 дюйма и затем отшлифованный ещё раз для того, чтобы толщина шлифа не превышала 15 микронов; после этого препарат устанавливают на предметный столик и накрывают покровным стеклом. Такие препараты наблюдают в свете, идущем от поляризатора через тонкий шлиф.

Все подобные исследования относятся к светлопольному микроскопу, к которому добавляются поляризатор, анализатор и компенсатор.

Исследователь руды может начать подготовку образца так же, как и тонкого среза, сделав его толщиной в 6-10 мм и отшлифовав поверхность. Ему потребуется эпиосвещение, следовательно, между бинокулярной насадкой и корпусом микроскопа должен быть помещен осветитель. Там будет и лампочка, и трансформатор; поляризатор, анализатор, компенсатор; апертурная и полевая диафрагмы, дихроичное зеркало ит. д.

Работа объективов для поляризационного света отличается от работы стандартных объективов. Главное, они должны быть свободны от внутреннего натяжения. Натяжение в объективах возникает в результате давления металлических оправ на края линзы. При наблюдении через микроскоп это проявляется во вспышке белого света, идущего от точки давления по направлению к центру.

Производители тщательно проверяют объективы на наличие внутреннего натяжения. Те объективы, в которых нет натяжения, идут в комплект поляризационных микроскопов по высокой цене; а объективы с натяжением, идут в комплект биологических микроскопов, в которых натяжение не играет никакой роли, или вовсе бракуются.

Мы продемонстрировали вам необходимость наших объективов. Эти объективы предназначены и скоррегированы для работы с препаратами под покровными стёклами толщиной 0,17 мм.

При исследовании руды под микроскопом полированную поверхность не закрывают покровным стеклом. Для такой работы есть нам нужны объективы, которые не будут скорректированы относительно покровных стёкол, или объективы для металлографии, но без натяжения.

Объективы 10х могут работать как с покровными стёклами, так и без них. Для рудных микроскопов потребуются 20х и более сильные объективы, которые скоррегированы на отсутствие покровного стекла.

Наш стандартный поляризационный микроскоп обычно имеет в комплекте объективы 5х, 10х и 40х. Револьвер имеет 4 гнезда для объективов, поэтому мы добавили второй объектив 40х для препаратов без покровного стекла, получив таким образом, двойной световой поляризационный микроскоп. Ранее при описании окуляров Гюйгенса, в примечании, было сказано, что они не обеспечивают цветокоррекцию или компенсацию хроматической аберрации и для решения этой проблемы следует обратиться к разделу «Поляризационная микроскопия».

С того момента, как мы определились со значением цветов, мы не хотим, чтобы окуляр или объектив давали в поле зрения цвета, не принадлежащие препарату. Мы знаем, что объективы без натяжения были выбраны для поляризационных микроскопов, из-за отсутствия натяжения и цветовой коррекции. Следовательно, очень важно, чтобы и окуляры были без цветовой коррекции или компенсации. По этой причине поляризационные окуляры обычно модифицированы до окуляров Гюйгенса. Иногда применяются также широкопольные окуляры, но специально проверенные на соответствие поляризационному микроскопу.

Будьте внимательны при подсчёте общего увеличения поляризационного микроскопа. Из-за высоты устройства, служащего для крепления анализатора и компенсатора, появляется дополнительное увеличение бинокулярной насадки. Например, микроскоп, снабжённый револьвером на 3 объектива, имеет дополнительное увеличение 1,4х, а микроскоп с револьвером на 4 объектива - 1,8х.

На рис. 10 приведен общий вид поляризационного микроскопа.

1. 10-кратный широкопольный окуляр с большим выносом зрачка

2. Линза Бертрана

3. Прорезь для компенсатора

4. Микрообъективы без натяжения

5. Вращаемый предметный столик со шкалой на лимбе; цена деления 1°

6. Конденсор

7. Вращаемый поляризатор с возможностью вывода из хода лучей

8. Полевая ирисовая диафрагма

9. Фокусировочный 10-кратный окуляр с направляющей и перекрестием

10. Бинокулярная насадка с возможностью поворота на 360° и с углом наклона 30° к оптической оси

11. Винт крепления бинокулярной насадки

12. Держатель анализатора

13. Револьвер с микрообъективами

14. Штатив микроскопа

15. Клипсы препаратодержателя

16. Регулятор перемещения по высоте кронштейна конденсора

17. Коаксиально расположенные механизмы грубой и точной фокусировки

18. Основание микроскопа со встроенным трансформатором и регулировкой яркости галогеновой лампы 6 В, 30 Вт.

Метод фазово-контрастной микроскопии

Большая часть клеточных структур мало отличается коэффициентом преломления света, поглощения лучей друг от друга и среды. Для того, чтобы изучить такие компоненты приходится изменять освещенность(с потерей четкости изображения) или применять особые методы и приборы. Метод фазово-контрастной микроскопии является одним из таких. Его широко применяют при витальном изучении клеток. Суть метода в том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе. Невидимые непосредственно ни глазом, ни фотопластинкой, эти фазовые изменения с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости, которые уже различимы глазом или фиксируются на фоточувствительном слое. В получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Получаемое таким образом изображение называется фазово-контрастным. Объекты могут выглядеть темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст).

Метод интерференционного контраста (интерференционная микроскопия)

Метод интерференционного контраста сходен с предыдущим - они оба основаны на интерференции лучей, прошедших через микрочастицу и миновавших её. Пучок параллельных световых лучей от осветителя раздваивается на два потока, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу и приобретает изменения в фазе колебания, другой -- мимо минуя объект по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. В результате интерференции будет строиться изображение, на котором участки клетки, обладающие разной толщиной или разной плотностью, будут отличаться друг от друга по степени контрастности. Метод интерференционного контраста часто применяют совместно с другими методами микроскопии, в частности с наблюдением в поляризованном свете. Его применение в сочетании с микроскопией в ультрафиолетовых лучах позволяет, к примеру, определить содержание нуклеиновых кислот в общей сухой массе объекта.

Поляризационная микроскопия

Поляризационная микроскопия - это метод наблюдения в поляризованном свете за объектами, обладающими изотропией, т.е. упорядоченной ориентацией субмикроскопических частиц. Перед конденсором поляризационного микроскопа помещается поляризатор, который пропускает световые волны с определенной плоскостью поляризации. После препарата и объектива помещается анализатор, который может пропускать свет с этой же плоскостью поляризации. Если анализатор повернуть затем на 90о по отношению к первой, то свет проходить не будет. В том случае, когда между такими скрещенными призмами будет находиться объект, обладающий способностью поляризовать свет, он будет виден как светящийся на темном поле. С помощью поляризационного микроскопа можно убедиться, например, в ориентированном расположении мицелл в клеточной стенке растений.

ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ

ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ

- см. в ст. Микроскопия.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ" в других словарях:

    ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ - микроскопия, основанная на способности разных компонентов клеток и тканей преломлять поляризованные лучи. В поляризационном микроскопе можно исследовать объекты, которым свойственно двойное лучепреломление … Словарь ботанических терминов

    Совокупность методов (и обеспечивающих эти методы устройств), предназначенных для наблюдения и изучения под микроскопом объектов, изменяющих в каком либо отношении поляризацию света (См. Поляризация света), который проходит через объекты… …

    ПОЛЯРИЗАЦИОННАЯ МИКРОСКОПИЯ - см. Микроскоп, Микроскопическая техника … Ветеринарный энциклопедический словарь

    Общее название методов наблюдения в микроскоп неразличимых человеческим глазом объектов. Подробнее см. в ст. (см. МИКРОСКОП). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    М. при освещении объекта поляризованным светом; применяется для обнаружения и изучения объектов или их структур, обладающих свойствами двойного лучепреломления … Большой медицинский словарь

    Термин сканирующая зондовая микроскопия Термин на английском scanning probe microscopy Синонимы Аббревиатуры СЗМ, SPM Связанные термины "умные" материалы, атомно силовая микроскопия, манипуляция атомами, кантилевер, микроскоп,… … Энциклопедический словарь нанотехнологий

    Способы изучения различных объектов с помощью микроскопа. В биологии и медицине эти методы позволяют изучать строение микроскопических объектов, размеры которых лежат за пределами разрешающей способности глаза человека. Основу М.м.и. составляет… … Медицинская энциклопедия

    - (от греч. ἱστός ткань и греч. λόγος знание, слово, наука) раздел биологии, изучающий строение тканей живых организмов. Обычно это делается рассечением тканей на тонкие слои и с помощью микротома. В отличие от анатомии,… … Википедия

    Микроскоп (от микро... и греч. skopéo смотрю), оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную оптическую… … Большая советская энциклопедия

    I Микроскоп (от Микро... и греч. skopéo смотрю) оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную… … Большая советская энциклопедия

Книги

  • Введение в количественную цитохимию , . Сводка по количественным методам исследования клетки и применяемой для этого оптической аппаратуре. Основное внимание в книге уделено наиболее надежным методам количественного определения…

Поляризационная микроскопия является одним из мощных методов морфологических исследования структуры и свойств препаратов. Поляризационная микроскопия позволяет изучать свойства гистологических структур, обладающих способностью двойного лучепреломления.

Для реализации метода поляризационной микроскопии можно дооснастить любой микроскоп. Микроскоп дооснащяется двумя поляризационными фильтрами: первый помещают непосредственно под конденсором, второй помещают между объективом и глазом исследователя. Поворотом поляризатора добиваются затемнения поля зрения. Помещают препарат. Вращают препарат на предметном столике до появления ярко светящихся структур. Свечение появляется в тот момент, когда ось двулучепреломляющего объекта будет находиться под углом 45° к плоскости поляризации.

Ранее для поляризационной микроскопии использовались поляризационные фильтры с линейной поляризацией. В новой методике изучалась возможности диагностики препаратов с использованием поляризационных фильтров с циркулярной поляризацией. Оказалось, что изображения, полученные с помощью циркулярных фильтров, несут гораздо больше информации и позволяют выявлять более тонкую структуру тканей и клеток.

Исследования в поляризованном свете можно проводить на замороженных или парафиновых срезах после депарафинизации, неокрашенных и окрашенных, заключенных в различные среды. Блоки ткани следует вырезать и ориентировать таким образом, чтобы мышечные волокна интересующего слоя миокарда были срезаны продольно.

Миофибриллы в поляризованном свете обнаруживают характерную поперечную исчерченность, связанную с чередованием, анизотропных (А) и изотропных I - дисков. Диски А обладают ярко выраженным положительным двулучепреломлением и кажутся светлыми в поляризованном свете (в обычном свете они темные), тогда как I - диски почти полностью лишены способности к двулучепреломлению и в поляризованном свете выглядят темными (в обычном свете - светлые).

С помощью поляризационной микроскопии удобно выявлять наиболее универсальные повреждения мышечных волокон миокарда и скелетных мышц - контрактурные повреждения (нарушение поперечной исчерченности кардиомиоцитов - одно из ранних признаков повреждения миофибрилл).

Принято выделять 3 стадии этих повреждений:

I стадия - усиливается анизотропия на отдельных участках мышечных волокон. II

стадия - А-диски с повышенной анизотропией сближаются, вследствие чего толщина 1-дисков уменьшается. III

стадия - А-диски сливаются в сплошной анизотропный конгломерат.

Наряду с контрактурными повреждениями поляризационная микроскопия

позволяет идентифицировать еще один тип поражения поперечнополосатых мышечных волокон - гиперрелаксацию саркомеров, свойственную в большой мере ишемии миокарда .

Простота поляризационного метода позволяет с минимальными затратами резко повысить достоверность диагностики наличия инфаркта миокарда.

По поводу поляризационного микроскопа. Ситуация состоит в том, что практически из любого микроскопа можно сделать поляризационный. Используются два поляризационных фильтра (покупаемых в фотомагазине) - один помещается над осветителем, а второй помещается между препаратом и объективом.

Создан справочный CD-ROM - «Поляризационная микроскопия». На диске собрано большое количество работ и материалов по применению поляризационной микроскопии.

Кроме того, создан специализированный комплекс - автоматизированное рабочее место судмедэксперта. В состав комплекса входят - микроскоп поляризационный Nikon E200, цифровая камера с 8 млн элементов, адаптеры и программное обеспечение.

Список литературы: 1.

Кактурский Л.В. Поляризационная микроскопия. В кн. Микроскопическая техника. - М.: Медицина, 1996. 2.

Целлариус Ю.Г., Семенова Л.А. Применение поляризационной микроскопии для гистологической диагностики ранних стадий ишемических и метаболических повреждений миокарда // Cor et vasa. - 1977 - Vol. 19. - № 1. - P. 28-33 3.

Непомнящих Л.М. Морфогенез важнейших общепатологических процессов в сердце. - Новосибирск: Наука, 1991. - 352 с. 4.

Целлариус Ю.Г., Семенова Л.А., Непомнящих Л.М. Очаговые повреждения и инфаркт миокарда. Световая, поляризационная и электронная микроскопия. - Новосибирск, 1980.

Еще по теме Колтовой Н.А. НОВЫЙ МЕТОД ПОЛЯРИЗАЦИОННОЙ МИКРОСКОПИИ ДЛЯ ДИАГНОСТИКИ ИНФАРКТА МИОКАРДА:

  1. ВОПРОС 252: Какие недостатки в профессиональной деятельности медицинских работников могут стать поводом для возбуждения уголовного или гражданского дела?
  2. Кирилов В.А., Бахметьев В.И. ИСПОЛЬЗОВАНИЕ МОРФОМЕТРИЧЕСКОГО МЕТОДА ДЛЯ ДИАГНОСТИКИ ВИДА ВНЕШНЕГО ВОЗДЕЙСТВИЯ ПО МОРФОЛОГИЧЕСКИМ ПРИЗНАКАМ РАЗРУШЕНИЯ ДЛИННЫХ ТРУБЧАТЫХ КОСТЕЙ
  3. Мишин Е.С., Подпоринова Е.Э., Праводелова А.О. ОЦЕНКА МЕТОДОВ ДИАГНОСТИКИ ПОВРЕЖДЕНИЙ ПОДЪЯЗЫЧНОЙ КОСТИ, ГОРТАНИ И ТРАХЕИ ПРИ ТУПОЙ ТРАВМЕ ШЕИ

Глоссарий:

  • Поляризованный свет - это световые волны, колебания которых распространяются в одном направлении.
  • Световая волна - это электрическое и магнитное излучение с плоскостью колебания перпендикулярной плоскости распространения волны.
  • Поляризатор (николь I) - это устройство, пропускающее через себя только полностью или частично поляризованный свет. Предназначен для пропускания поляризованного света на(через) исследуемый прозрачный объект и отсекание(рассеивание) неполяризованного (естественного света, искусственного света, в т.ч. излучения осветителя микроскопа). Интенсивность света прошедшего через поляризатор падает пропорционально квадрату косинуса угла между плоскостями поляризации поляризатора и анализатора (закон Малюса):

Где: I - интенсивность до прохождения через поляризатор, I - интенсивность света после прохождения поляризатора, φ - угол между плоскостями поляризации поляризованного света и поляризатора.

  • Анализатор (николь II) - устройство, аналогичное поляризатору, но предназначенное для анализа поляризованного света.

Поворот анализатора относительно поляризатора на угол ϕ. Интенсивность света показана красной стрелкой.

  • Компенсатор - это устройство для определения количественных характеристик поляризации. Преобразует контрастное видимое изображение в цветное, так как гасит определённые длины волн в белом свете.
  • Линейно поляризованный свет - это свет с плоскостью колебания, ограниченной в одном направлении, и распространяющийся в одной плоскости.
  • Фаза колебаний световой волны, с математической точки зрения, это аргумент функции световой волны, то есть ωt+φ 0 в функции sin(ωt+φ 0). С физической, это определённое электромагнитное состояние в определённый момент времени.
  • Длина волны – расстояние между двумя ближайшими точками, находящимися в одной фазе.
  • Отражение - это изменение направления волны. Полным отражением называют изменение угла преломления волны менее 90°.
  • Преломление - это изменение направления волны на границе двух сред. Двойное лучепреломление – это расщепление одного луча света в анизотропной среде на две луча.


Рисунок 4 – Преломление лучей в кристалле исландского шпата.

  • Дихроизм - это частичное поглощение веществом света, в зависимости от его поляризации.
  • Интерференция – это изменение интенсивности света при наложении двух или более световых волн.
  • Разность хода световых лучей – это величина, характеризующая замедление скорости света, при прохождении через прозрачное вещество. Измеряется разность хода расстоянием проходимое светом в вакууме за то же время, которое необходимо для прохождения в исследуемом веществе, в исследуемых точках пространства.
  • Коноскопия – это метод изучения оптических свойств анизотропных объектов в сходящихся лучах поляризованного света. При коноскопии ведётся наблюдения за изменением интерференционной картины при повороте анализатора. Вращая анализатор и поляризатор, друг относительно друга, исследователь наблюдает в микроскоп коноскопические фигуры, состоящие из изогир (это тёмные полосы, соответствующие направлению колебаний световых волн в поляризаторе) и изохром (это полосы разных интерференционных цветов, которые соответствуют направлениям движения лучей в кристалле с одинаковой разностью хода).
  • Ортоскопия – это метод изучения оптических свойств анизотропных объектов в параллельных лучах поляризованного света.
  • Плеохроизм – изменение наблюдаемой окраски некоторых анизотропных объектов при изменении угла наблюдения (изменение цвета кристаллов при повороте столика).

Поляризационный микроскоп - это микроскоп, предназначенный для исследования двойного лучепреломления поляризованного света, проходящего через анизотропную среду

Первый поляризационный микроскоп был сконструирован в 1863 году Генри Клифтоном Сорби и отличался от привычного нам оптического микроскопа, двумя призмами Николя, установленными в оптическом пути. Призма Николя пропускает через себя свет только в одном направлении и в одной плоскости, то есть плоско поляризованный свет, остальной свет, попавший в эти призмы полностью отражается и рассеивается. Эти призмы конструктивно ничем друг от друга не отличаются и выполняют роль поляризаторов (анализатора и поляризатора). Когда плоскость поляризации анализатора повёрнута на 90º, относительно плоскости поляризации поляризатора, исследователь наблюдает поляризационную картину двулучепреломляющего объекта, а все объекты, не обладающие двойным лучепреломлением - затемнены. В современных микроскопах, для получения большего количества информации могут использоваться ДИК призмы (совмещение рельефа с поляризационной картиной, для изучения неокрашенных образцов), компенсаторы (для количественной поляризации), круглый столик (для изучения плеохроизма) и простые поляроиды для несложных наблюдений (например в биологии и медицине).

Наиболее часто поляризация применяется в икроскопах для кристалографии, где свойства анизотропных объектов могут быть определены с помощью коноскопии и ортоскопии. Обратите внимание на сходство и различие коноскопии и ортоскопии: световой пучок, проходит через поляризатор (1), ограничивается апертурной диафрагмой (2), проходит через линзы конденсора (3); анализатор (который поворачивает исследователь) (8) и компенсаторы (7).


Рисунок 1 – Схема поляризационного микроскопа при: а) Ортоскопии б) Коноскопии

Условные обозначения: 1 - поляризатор, 2,6 - диафрагмы; 3 - конденсор; 4 - препарат; 5 - объектив; 7 - компенсатор; 8 - анализатор; 9 - линза Бертрана; 10 - фокальная плоскость окуляра; 11 - окуляр.

Наблюдаемая картина состоит из коноскопических фигур. коноскопические фигуры – состоят из изогир (это тёмные прямые или изогнутые полосы, в которых направления колебаний параллельны главным сечениям николей) и изохром (это полосы, окрашенные в различные интерференционные цвета. Каждая полоса соответствует направлениям лучей, образовавшихся при двулучепреломлении, и имеющим одинаковую разность хода).

Приведём пример: в пластинках одноосного кристалла, вырезанного перпендикулярно оптической оси, мы увидим изогиру в форме креста и концентрические кольца изохромы см. рис. 5.


Рисунок 5 – А) Коноскопические фигуры одноосного минерала кальцита Б) Двуосного минерала флогопита со вставленным компенсатором.

По характеру полученной интерференционной картины проводится измерение величины двойного лучепреломления, углов поворота плоскости поляризации, углов погасания, определение количества оптических осей и других характеристик. Все эти характеристики дают понять какой кристалл наблюдает исследователь, его строение. Для минералогии и кристаллографии сконструированы такие микроскопы как BX53P и H600P. Они оснащаются лучшей оптикой, свободной от напряжений и компенсаторами, изготовленными на современном оборудовании, исключающим люфт и зазоры при их установки в микроскоп.

Двулучепреломление применяется не только в кристаллографии, но и в медицине, биологии, криминалистике и металлографии, потому как исследователям важно быстро и точно выделять витамины, кислоты, минералы, напряжения в изотропных объектах, неметаллические включения в исходном образце и другие. Например, микроскопы для гистологии и цитологии оснащаются поляризаторами для выявления разного рода объектов. Круглые объекты с диаметром около 2,4 мкм, липоиды и капли, при скрещенных поляризаторах образуют интерференционную картину мальтийский крест. Не все вещества обладают одинаковыми свойствами лучепреломления при разных температурах, так, например, можно выделить 1) вещества приобретающие анизатропные свойства при охлаждении и теряющие их при нагревании: холестерин и его эфиры 2) не теряющие своих анизатропных свойств при нагревании: цереброзиды, фосфатиды, миелины. Такая изменчивость свойств обусловлена способностью вещества поддерживать кристаллическую структуру, т.к. именно она обуславливает двулучепреломление. Наблюдая анизатропные объекты в поляризационном микроскопе и определяя их концентрацию, можно диагностировать такие заболевания как: артрит, атеросклероз, липоидурия, цилинурия и липидоз по свечению липидов при скрещенных поляризаторах, а также подагру, мочекаменную болезнь, селикоз и асбестос по кристаллам мочевины, двуокиси кремния и асбестовым волокнам соответственно. Для гистологии и цитологии разработан микроскоп BX46, который оснащён низким столиком, мощным осветителем и регулируемый по высоте тубус, который избавит спину исследователя от затекания.

Окраску отличную от изотропных объектов, в поляризованном свете имеют: крахмал, целлюлоза, некоторые кислоты, витамин С, поэтому микроскопы для фармакологии и фармацевтики так же должны оснащаться поляризаторами. Фармакологический микроскоп, это и CX43, и BX43, и другие модели, потому что исследований в этой области с каждым годом всё больше,а новые объекты исследований требуют иного подхода.

В криминалистике важно отличить вкрапления зёрен кварца и других минералов от органики и других материалов, которые можно найти на месте преступления, поэтому микроскоп должен обязательно быть оснащён отражённым светом, чтобы рассматривать и непрозрачные объекты. Для криминалистики подойдёт микроскоп BX53M , так как он оснащается не только мощным источником проходящего света, но и таким же мощным осветителем отражённого света, а провставки для увеличения рабочего расстояния микроскопа, позволят проводить исследования очень больших объектов не проводя долгой предварительной подготовки.

В металлографии тоже применяются поляризационные микроскопы, но для подобных исследований достаточно знать наличие или отсутствие анизатропных объектов, а так же их пространственное распределение. Именно для классификации и подсчёта таких объектов, в металлографии можно использовать микроскопы VHX6000, BX53P с установленным Stream.

error: