Фазово контрастная микроскопия использует при изучении. Методы микроскопии (люминесцентная, темнопольная, фазово-контрастная, электронная)

ФАЗОВО-КОНТРАСТНАЯ МИКРОСКОПИЯ - способ микроскопического исследования прозрачных, не поглощающих света объектов, основанный на усилении контраста изображения.

Прозрачные, не окрашенные объекты (живые и фиксированные микроорганизмы, клетки и др.), отличающиеся от окружающей среды по показателю преломления, не поглощают света, но изменяют его скорость и, следовательно, фазу световых колебаний. Причем степень этих изменений зависит от величины показателя преломления и толщины структур объекта. Однако эти изменения не воспринимаются глазом, не регистрируются фотоматериалами, и исследуемые объекты при световой микроскопии почти не отличаются от фона. Для усиления контрастности изображения применяют фазово-контрастная микроскопия. Ее широко используют для прижизненного изучения микроорганизмов, простейших, клеток растений и животных. В гематологии, например, фазово-контрастную микроскопию применяют для подсчета и дифференциации клеток, изучения их подвижности, дифференциальной диагностики лейкозов и др.

Способ превращения фазовых изменений в соответствующие им амплитудные был предложен в 30-х годов 20 века голландским физиком Зернике (F. Zernike). Принцип фазово-контрастной микроскопии заключается в том, что свет, не отклоненный объектом, проходит через нанесенное на одну из линз объектива фазовое кольцо, смещающее его фазу на четверть длины волны и ослабляющее его интенсивность (для того, чтобы уравнять ее с интенсивностью дифрагированного объектом света), а дифрагированный (отклоненный) свет проходит мимо фазового кольца (см. Микроскоп).

Прохождение прямого, не дифрагированного объектом света через фазовое кольцо обеспечивается находящейся в конденсоре кольцевой диафрагмой, проекция к-рой в плоскости выходного зрачка объектива равна по диаметру и ширине фазовому кольцу и должна полностью совпадать с ним. Для каждого объектива имеется своя кольцевая диафрагма.

В плоскости изображения происходит интерференция световых волн, прошедших и не прошедших через фазовое кольцо. При этом возникают различия в амплитуде, отражающие изменения фазы в зависимости от свойств участков объекта. В отличие от фазовых амплитудные изменения световых волн хорошо видны глазом и могут быть зарегистрированы.

В зависимости от способа изготовления фазового кольца фаза прямого, не дифрагированного объектом света может либо опережать фазу дифрагированного, либо отставать от нее. При этом возникает или наиболее распространенный позитивный фазовый контраст, где частицы с показателем преломления большим, чем у окружающей среды (более плотные), выглядят темными на светлом фоне, или негативный, где такие же частицы дают изображение светлее окружающего фона. Необходимо, однако, отметить, что эта картина сохраняется только до определенной величины показателя преломления, а после достижения этой величины происходит инверсия контраста, то есть наблюдаются обратные закономерности.

Фазово-контрастное устройство (в частности, КФ-4, выпускаемое в нашей стране) состоит из объективов, на одну из линз которых нанесено фазовое кольцо, конденсора с револьверным диском, содержащим набор кольцевых диафрагм, и центрировочным приспособлением, а также вспомогательного микроскопа (рис. 1), с помощью которого в плоскости выходного зрачка объектива можно наблюдать за совмещением фазового кольца и проекции кольцевой диафрагмы конденсора. Это устройство может быть установлено на любой микроскоп.

Существует ряд конструктивных разновидностей фазово-контрастных устройств: с одной кольцевой диафрагмой для всех объективов при использовании панкратического конденсора (например, в отечественных микроскопах МБИ-6, МБИ-15), с так называемым вынесенным зрачком, при котором фазовое кольцо помещается вне объектива, что позволяет использовать для фазово-контрастной микроскопии обычные объективы (такое устройство имеется в отечественных микроскопах МБИ-13, МБИ-17). Выпускаются также устройства с переменным фазовым контрастом (с двумя кольцами разного диаметра).

Одной из разновидностей негативного фазового контраста является аноптральное (фазово-темнопольное) устройство. Аноптральное устройство было создано в 1953 году Вильской (A. Wilska) и используется для изучения объектов, вносящих небольшой сдвиг фазы. Модификация этого метода была предложена М. А. Пешковым и широко использовалась у нас в стране.

Методика приготовления препаратов для фазово-контрастной микроскопии зависит от объекта исследования и длительности его изучения: неокрашенные микроорганизмы можно рассматривать в препаратах раздавленная капля (см.), для длительного наблюдения и кинорегистрации размножения микроорганизмов используют специальные агаровые.микрокамеры (см.) на предметных стеклах (камера Фонбрюна, HI-образная камера Пешкова). Для изучения динамики процессов в однослойных культурах ткани также применяют микрокамеры (стационарные и перфузионные). Очень важными факторами, в значительной мере определяющими качество изображения, являются толщина препарата и различия в показателях преломления объекта и среды.

Техника фазово-контрастной микроскопии сравнительно проста: объективы и конденсор микроскопа заменяют на специальные (на отечественных фазово-контрастных объективах имеется обозначение Ф, на зарубежных - Ph), диск конденсора устанавливают в положение О (то есть сквозное отверстие без кольцевой диафрагмы), на предметный столик помещают препарат, настраивают свет по Келеру (см. Микроскопические методы исследования), вращением диска вводят кольцевую диафрагму, соответствующую увеличению объектива. Вместо окуляра устанавливают вспомогательный микроскоп. Выдвигая его верхнюю часть, получают резкое изображение фазового кольца и кольцевой диафрагмы. Центрировочными винтами конденсора точно совмещают оба кольца, после чего вместо вспомогательного микроскопа устанавливают окуляр. При смене препарата целесообразно проверить совмещение колец (рис. 2).

Достоинством фазово-контрастной микроскопии является возможность проводить прижизненные наблюдения (без какой-либо обработки) биол. объектов, напр, макрофагов (рис. 3), а недостатком - возникновение светлого (в случае позитивного контраста) или темного (в случае негативного) ореола вокруг объекта и его структур. Более полная информация может быть получена при сочетании фазово-контрастной и люминесцентной микроскопии при применении как иммунолю-минесцентного (см. Иммунофлюоресценция), так и люминесцентно-цитохимического метода (см. Люминесцентная микроскопия). При работе с люминесцирующими сыворотками фазово-контрастной микроскопии позволяет убедиться в наличии микрообъекта в том случае, если он не связывает люминесцирующие антитела, а также изучать объекты, у которых антитела фиксируются на отдельных структурах.

Особенно большую роль в прижизненном цитологическом изучении динамики различных физиологических и патологических процессов в клеточной биологии, микробиологии, вирусологии сыграло сочетание фазово-контрастной и аноптральной микроскопии с микрокиносъемкой (см.). Этот метод был использован для изучения цитологии бактерий и простейших, митоза в различных клетках, цитопатического действия вирусов и риккетсий на клетки. Были также изучены особенности образования и развития L-форм бактерий и микоплазм, действие антибиотиков на бактерии.

Библиогр.: Кравченко А. Т., Милютин В. Н. и Гудима О. С. Микрокиносъемка в биологии, М., 1963; Руководство по микробиологической диагностике инфекционных болезней, под ред. К. И. Матвеева, с. 5, 25, М., 1973; Скворцов Г. Е. и др. Микроскопы, Л., 1969; Франсон М. Фазовоконтрастный и интерференционный микроскопы, пер. с франц., М., 1960; Cinemic-rography in cell biology, ed. by G. G. Rose, N. Y.-L., 1963; Zernike F. Diff-raktion theory of the knife edge test and its improved form of the phase contrast method, Physica, v. 1, p. 689, 1934.

М. Я. Корн, E. С. Станиславский.

Схема фазово-контрастного микроскопа.
1. Кольцо конденсера
2. Предметная плоскость
3. Фазовая пластинка
4. Первичное изображение.
В отличие от опорного света, рассеянный на образце предметный свет, в областях, изображённых синим, минует фазовую пластинку, таким образом длина его оптического пути другая

Фазово-контрастная микроскопия - метод получения изображений в оптических микроскопах , при котором сдвиг фаз электромагнитной волны трансформируется в контраст интенсивности. Фазовоконтрастную микроскопию открыл Фриц Цернике , за что получил Нобелевскую премию за 1953 год .

Принцип действия

Для получения фазовоконтрастного изображения свет от источника разбивается на два когерентных световых луча, один из них называют опорным, другой предметным, которые проходят разные оптические пути . Микроскоп юстируют таким образом, чтобы в фокальной плоскости, где формируется изображение, интерференция между этими двумя лучами гасила бы их.

Изображение клетки в фазово-контрастном микроскопе

Длину оптического пути изменяют с помощью так называемой фазовой пластинки (англ.) русск. , расположенной на фазовом кольце. Когда на пути одного из лучей находится образец, преломление света в нём изменяет оптический путь, а, следовательно, и фазу, что изменяет условия интерференции.

Фазово-контрастная микроскопия особенно популярна в биологии, поскольку не требует предварительного окрашивания клетки , из-за которого та может погибнуть.

История открытия

Голландский физик, математик и химик Фриц Цернике в 1930 году начал работать в области оптики. В этом же году он открыл фазово-контрастный метод. В течение 1930-1940-х годов Цернике внёс свой вклад и в других вопросах оптики, в то время как фазово-контрастный метод не был замечен широкими кругами учёных. Новый метод оставался вне поля зрения научного сообщества вплоть до Второй мировой войны , когда во время немецкой оккупации Голландии открытие Цернике было использовано для создания первых фазово-контрастных микроскопов. В течение войны многие производители стали выпускать фазово-контрастные микроскопы, и они стали широко применяться в биологических и медицинских исследованиях.

Ссылки

Источники


Wikimedia Foundation . 2010 .

Смотреть что такое "Фазово-контрастная микроскопия" в других словарях:

    См. Микроскопия в фазово контрастном микроскопе. (Источник: «Словарь терминов микробиологии») … Словарь микробиологии

    Метод микроскопического исследования, основанный на получении с помощью специальных приспособлений контрастного изображения различающихся по плотности структур бесцветных прозрачных микрообъектов, например живых микроорганизмов и тканевых …

    ФАЗОВО-КОНТРАСТНАЯ МИКРОСКОПИЯ - фазово контрастная микроскопия, см. Микроскоп, Микроскопическая техника … Ветеринарный энциклопедический словарь

    фазово-контрастная оптическая микроскопия - 4.34 фазово контрастная оптическая микроскопия (phase contrast optical microscopy): Метод микроскопического анализа, основанный на преобразовании дифференциальных фазовых сдвигов световых волн, проходящих через образец, в различие амплитуд.… … Словарь-справочник терминов нормативно-технической документации

    М. живых неокрашенных объектов, при которой контрастность изображения повышают путем превращения фазовых различий прошедшего сквозь объект пучка световых лучей в амплитудные … Большой медицинский словарь

    Общее название методов наблюдения в микроскоп неразличимых человеческим глазом объектов. Подробнее см. в ст. (см. МИКРОСКОП). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    Совокупность методов изучения малых объектов с помощью микроскопов. К традиционным видам М. относятся–люминесцентная М. – основана на явлении фотолюминесценции, возникающей при окраске препаратов специальными люминесцентными красителями;… … Словарь микробиологии

    Схема темнопольной микроскопии в падающем свете. Подсветка образца осуществляется сбоку (зеленая линия). Изображение создается светом, рассеивающимся на неоднородностях образца. Темнопольная микроскопия вид оптическ … Википедия

    Метод исследования главным образом живых малоконтрастных объектов (простейших, бактерий, клеток в культуре) посредством аноптрального микроскопа (изобретён в 1953 финским физиологом А. Вильска) разновидности фазово контрастного микроскопа … Большая советская энциклопедия

    Способы изучения различных объектов с помощью микроскопа. В биологии и медицине эти методы позволяют изучать строение микроскопических объектов, размеры которых лежат за пределами разрешающей способности глаза человека. Основу М.м.и. составляет… … Медицинская энциклопедия

Метод, который позволяет резко повысить контрастность изображения объекта. Принцип метода состоит в выявлении сдвигов фазы световых колебаний, которые возникают, когда свет проходит сквозь структуру, имеющую показатель преломления, отличающийся от показателя преломления окружающей среды.

Фазовые сдвиги глазом непосредственно не улавливаются, но в специальном фазово-контрастном микроскопе структуры, имеющие более высокий показатель преломления (даже совершенно прозрачные), оказываются более темными (или более светлыми в зависимости от конструкции прибора), чем окружающий фон (рис. 1.28).

Рис. 1.28. Фото амебы (фазово-контрастная микроскопия)

Поляризационная микроскопия

Метод наблюдения в поляризованном свете для исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). Таковыми являются многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр.

Наблюдение можно проводить как в проходящем, так и в отражённом свете (рис. 1.29).

Рис. 1.29. Кристаллы урата натрия (Samaras N, Rossi C. N Engl J Med. 2012)

Ультрафиолетовая микроскопия

Метод основан на способности некоторых веществ избирательно поглощать ультрафиолетовые лучи с определенной длиной волны, принципиально почти ничем не отличается от обычной световой микроскопии и осуществляется при помощи микроскопов с кварцевой или отражательной (зеркальной) оптикой. Изображение рассматривается на флюоресцирующем экране визуально, а также фотографируется. Микроскопирование объектов позволяет выявить исследуемые вещества, не применяя окрашивания.

Флюоресцентная (люминесцентная) микроскопия позволяет изучать как собственную (первичную) флюоресценцию ряда веществ, так и вторичную флюоресценцию, вызванную окрашиванием клеточных структур специальными красителями - флюорохромами. Принцип метода состоит в том, что некоторые вещества при световом облучении начинают светиться сами.

Для возбуждения флюоресценции в видимой части спектра обычно пользуются синим светом или ультрафиолетовыми лучами. Многие вещества, не флюоресцирующие в видимой области (в особенности нуклеиновые кислоты), при освещении ультрафиолетовыми лучами начинают флюоресцировать и могут выявляться без применения флюорохромов (рис. 1.30).

Рис. 1.30. Процесс митоза (флюоресцентная микроскопия)

Метод электронной микроскопии

Метод, при котором вместо света используют поток электронов, стеклянные линзы заменены электромагнитными полями, максимальное увеличение 1,5 млн. раз. Не требует окраски препарата. (1933 г. - Германия)

Применениеэлектронноймикроскопиивбиологии позволило изучить сверхтонкую структуру клетки внеклеточных компонентов тканей. На основании результатов, полученных с помощью данного метода (максимальное увеличение до 800 - 1200 тыс.), начиная с 40-х гг. было описано тонкое строение мембран, митохондрий, рибосом и других клеточных, а также внеклеточных структур, выявлены некоторые макромолекулы, например ДНК.

Растровая (сканирующая) электронная микроскопия дает возможность изучать тонкое строение поверхности клеток и тканевых структур не только фиксированных объектов, но и живых животных. Техника приготовления биологических препаратов для электронноймикроскопиивключает процедуры, сохраняющие ткань в условиях глубокого вакуума под пучком электронов и реализующие высокое разрешение. Для повышения контраста изображения клеток их обрабатывают «электронными красителями», сильно рассеивающими электроны.

Применение электронноймикроскопиив биологии существенно изменило и углубило прежние представления о тонком строении клетки(рис. 1.31-1.34).

Рис. 1.31. Снимок стафиллококков с помощью растрового электронного микроскопа

Рис. 1.32. Электронный микроскоп

Рис. 1.33. Устройство электронного микроскопа

Рис. 1.34. Снимок Helicobacter с помощью растрового электронного микроскопа

(Dr. Patricia Fields, Dr. Collette Fitzgerald)

Метод центрифугирования

Разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки, легких и тяжелых фракций органических веществ и т. д. при этом ускорение в 300 раз больше, чем земное притяжение.

Центрифуга служит для разделения сыпучих тел или жидкостей различного удельного веса и отделения жидкостей от твёрдых тел путем использования центробежной силы. При вращении в центрифуге частицы с наибольшим удельным весом располагаются на периферии, а частицы с меньшим удельным весом - ближе к оси вращения(рис. 1.35).

Рис. 1.35. Устройство центрифуги

Изображение диатомеи при различных методах контрастирования – светлое поле, темное поле, дифференциально-интерференционный контраст (ДИК), цветные монохроматические фильтры

При работе с микроскопом исследователи часто сталкиваются с низким контрастом изображения в окулярах и на фотокамере. Иногда крайне затруднительно различить мельчайшие дефекты на кремниевой пластине или определить рельеф поверхности образца. Причин может быть несколько, но в основном это несоответствие условий освещения задачам наблюдения. В этой статье речь пойдет о повышении информативности изображения при использовании специальных фильтров и оптических компонентов, меняющих природу формирования изображения. Мы рассмотрим методики контрастирования на микроскопах отраженного и проходящего света, подробно отразив схемы хода лучей.

Темное поле/косопадающий свет

При освещении объекта коаксиальным светом через объектив очень сложно оценить топографию поверхности объекта или микродефекты образца из-за отсутствия теневых областей. Иногда бестеневое освещение необходимо (в случае реставрационных работ под стереомикроскопом или при проведении каких-либо хирургических операций), но в случае, когда нам необходимо определить рельеф поверхности, тени – единственное, за что сможет зацепиться наше зрение. Для того, чтобы создать рельефную контрастную картину, необходимо осветить объект сбоку так называемым косопадающим светом. На стереомикроскопе при помощи специальных осветителей типа «гусиная шея» сделать это не составит труда, в то время как на лабораторном микроскопе крошечное рабочее расстояние объектива не позволит вводить источник света сбоку. На помощь в таком случае нам придут темнопольные объективы (индекс BD – Brightfield/Darkfield).



1 – осветитель отраженного света, 2 – система конических зеркал, 3 – наклонное кольцевое зеркало, 4 – темнопольный объектив, 5 – образец на предметном столе

Такие объективы обладают дополнительным металлическим цилиндром снаружи, являющимся проводником и отражателем света. Свет не попадает через объектив непосредственно в поле зрения, но попадает через полый цилиндр на поверхность образца вне поля зрения, и, отражаясь от нее, обеспечивает предельно косопадающее освещение видимой области. Микрочастицы, расположенные на ровной поверхности образца, начинают светиться, трещины и прочие дефекты резко подчеркивают грани. При работе в проходящем свете достаточно воспользоваться темнопольной вставкой в конденсор – метод А.


1 – вставка в конденсор, 2 – конденсорная линза, 3 – образец, 4 – объектив

При работе с объективами с высокой числовой апертурой необходимо использовать диафрагму, отрезающую проходящий свет из конденсора – метод B.

Темное поле в проходящем свете. (Метод В: апертурная диафрагма объектива с высокой NA, отрезающая проходящий свет)
1 – темнопольная вставка в конденсор, 2 – конденсорная линза, 3 – образец, 4 – объектив, 5 – апертурная диафрагма

Фазовый контраст

Фазовый контраст используется в основном в биологии для изучения живых неокрашенных клеток. Метод основывается на разности оптической плотности (показателя преломления) разных частей наблюдаемого объекта, а также среды, в которую образец заключен. Например, упрощенно рассматривая клетку, расположенную в водном растворе, мы сможем выделить три зоны: А (водный раствор), В (цитоплазма) и С (ядро).


А – луч света, не прошедший через образец. B – луч света, прошедший через мембрану клетки (запаздывание Д1) ,C – луч света, прошедший через ядро (запаздывание Д2 > Д1)


1 – фазовая вставка в конденсор, 2 – линза конденсора, 3 – образец, 4 – объектив, 5 – фазовое кольцо в объективе, 6 – лучи со сдвигом фазы, 7 – луч без запаздывания

Световые волны незначительно смещаются, проходя через различные среды, из-за разности показателя преломления. Причем, помимо геометрического смещения, происходит явление запаздывания – смещение фазы. До прохождения через препарат волны света находятся “в фазе”, а после прохождения через различные материалы – уже нет. Величина фазового смещения будет зависеть от оптической плотности материалов, а также от величины пути в этих средах.
Наш глаз не может заметить разность фаз в изображении. Он различает только разницу интенсивности и разницу цвета. Метод фазового контраста позволяет преобразовать значения фазового сдвига в значения интенсивностей света.

В конденсор микроскопа вставляется специальная фазовая вставка (кольцевая диафрагма, схожая с темнопольной вставкой). Свет, прошедший через нее, формируется конденсором и освещает препарат. Весь пучок света поступает в объектив и в зрачке объектива формируется изображение фазовой вставки. В этом месте в объективе расположено нанесенное на стекло фазовое кольцо – оптический материал, снижающий интенсивность излучения и придающий свету постоянное фазовое смещение. Если в препарате содержатся объекты, изменяющие направление луча (как клетки и их ядра), то свет из прямого луча отклоняется на новую траекторию. Этот свет не проходит сквозь фазовое кольцо, не ослабляется и не задерживается. Все частичные лучи объединяются тубусной линзой и формируют промежуточное изображение. В нем частичные лучи, поступающие с различными фазами, ослабляются или усиливаются, накладываясь друг на друга. Таким образом, разность фаз превращается в разницу интенсивностей, которую может регистрировать наш глаз.

Метод фазового контраста незаменим при работе с живыми клетками, проведении ЭКО, различных манипуляциях с неокрашенными препаратами.

Поляризация

Поляризация – широко применяющийся метод контрастирования, меняющий физику изображения. Этот метод позволяет убрать блики поверхностей с высоким коэффициентом отражения, получить качественное и насыщенное изображение, но главное – с поляризацией возможно проведение петрографических исследований и измерений углов поляризации для определения состава объекта. Для проведения поляризационных исследований необходимо два компонента – поляризатор (обычно неподвижный) и анализатор (обычно вращаемый).
Два фильтра (поляризатор и анализатор), введенные последовательно в ход лучей и повернутые относительно друг друга на 90 градусов, не пропускают свет. Первый фильтр изменяет плоскость поляризации света таким образом, что пропущенный им свет не может пройти через второй фильтр (анализатор). Реализация поляризованного освещения в микроскопе достаточно простая задача.
При работе с проходящим светом поляризатор устанавливается в конденсор, а анализатор находится за объективом. В отраженном свете анализатор остается на своем месте, а поляризатор устанавливается перед дихроичным зеркалом сразу после апертурной диафрагмы осветителя отраженного света. В обоих случаях образец освещается плоскополяризованным светом. Если образец при освещении поворачивает направление колебаний поляризованного света из плоскости заданной поляризатором, то в окулярах мы начинаем видеть свет, который частично пропускает анализатор. Явление поляризации характерно прежде всего для таких кристаллов как минералы, а также для полимеров.


1 – осветитель, 2 – поляризатор, 3 – дихроичное зеркало, 4 – объектив, 5 – образец, 6а – лямбда-пластина, 6 – анализатор, 7 – тубусная линза


1. поляризатор, 2 – конденсор, 3 – образец, 4 – объектив, 5а – лямбда пластина, 5 – анализатор, 6 – тубусная линза

Обычно в оптический путь перед анализатором вводят компенсатор “Лямбда-пластину” (иногда его называют красной пластиной первого порядка). Линейно поляризованный луч в кристалле компенсатора раскладывается на 2 луча: обыкновенный и необыкновенный, близкие по интенсивности. При выходе из компенсатора необыкновенный луч получает запаздывание на одну длину волны относительно обыкновенного. Но поскольку обыкновенный и необыкновенный лучи поляризованы по-разному, то интерферировать они не могут. Пройдя анализатор, установленный перпендикулярно поляризатору, оба луча будут ослаблены наполовину, но их плоскости поляризации теперь совпадут. Лучи интерферируют, и, в результате, поле зрения окрашивается в розово-красный цвет (как правило разность хода волн в компенсаторе порядка 580 нм). Если между поляризатором и компенсатором окажутся оптически-активные включения, то для прошедших через них лучей условия интерференции будут другими, и изменится их цвет. То есть компенсатор осуществляет цветовое контрастирование оптически-активных объектов. Углом поворота компенсатора можно в определенной мере менять цвет фона и “раскраску” объектов, но при угле 45 градусов относительно поляризатора и анализатора будет получена максимальная интенсивность.

Механические напряжения в стекле приводят к двулучепреломлению, оказывающему воздействие на поляризованный свет. Часто для проведения количественных поляризационных исследований используют специальные объективы, не обладающие внутренними напряжениеями, они имеют маркировку Pol.

Дифференциально-интерференционный контраст Номарского (DIC, ДИК)

Дифференциально-интерференционный метод контрастирования (DIC) является, в некотором виде, комбинацией методов фазового и поляризационного контраста. В проходящем свете дифференциально-интерференционный контраст реализуется несколько сложнее из-за использования двух ДИК-призм (двулучепреломляющие призмы). Ход лучей при ДИК контрастировании схож с поляризационным методом, но дополнительно в оптический путь вводятся две ДИК-призмы – в конденсор и вблизи зрачка объектива. Призма в конденсоре осуществляет векторное разложение плоскополяризованного света по двум взаимноперпендикулярным направлениям колебаний и смещает их в боковом направлении так, что в препарате возникает боковое смещение составляющее дельта Х = к * лямбда. К – коэффициент смещения, обычно меньше единицы.

Далее вспомним метод фазового контраста. Если оба частичных луча пройдут через совершенно одинаковые структуры, то они не приобретут разность хода. Но если для частичных пучков имеются различные условия (разная оптическая плотность образца), то каждый из них на выходе из образца приобретает свою разность хода. Частичные пучки собираются второй ДИК призмой, анализатор выбирает из смещенных по фазе волновых комплектов только те, которые колеблются в направлении анализатора. Таким образом, после анализатора мы получаем лучи, колеблющиеся в одном направлении и разные по фазе. Накладываясь друг на друга, лучи интерферируются и, таким образом, фазовый сдвиг превращается в разность интенсивности. Посредством лямбда-пластины достигается дополнительный цветовой контраст.
Метод показывает только “продольные” изменения, следствием чего является получение рельефных изображений. ДИК в проходящем свете превосходно подходит для отображения отдельных сечений неокрашенных толстых объектов.

Самым главным достоинством фазово-контрастного метода микроскопирования живых неокрашенных микроорганизмов является чёткое и контрастное их изображение. Данный способ изучения наиболее приемлем для исследований в клинических лабораториях для изучения различного рода выделений и осадков, простейших, их цист, процессов агглютинации, рассмотрение ретикулоцитов, а также кровяных пластинок, костного мозга качественных и злокачественных опухолей и прочее.

Для того чтоб понять сущность и принцип работы фазово-контрастного метода необходимо знать, что фотоплёнка и человеческий глаз способен воспринимать исключительно изменения амплитуды, то есть размахи колебаний световой волны, однако они не восприимчивы к изменениям её фазы, задержкам или ускорениям.

Все препараты, которые наблюдались в микроскопах в тех частях, где были смещения амплитуды световых волн, являются контрастными, а там, где присутствовали фазовые смещения, были малоконтрастные. Используя фазово-контрастные приспособления микроскопа, существующие фазовые неконтрастные колебания искусственно конвертируются в колебания с другой амплитудой, из-за чего фазовые элементы препарата становятся такими же контрастными, как и амплитудные. Вследствие этого изображение всего исследуемого объекта становится чётким и контрастным.

Для достижения подобного результата можно использовать обычный микроскоп МБИ – 2, а также специальный к нему набор фазово-контрастных приборов, в состав которых входят: конденсатор с комплектом кольцевых диафрагм, комплект фазовых объективов (10Х, 20 X, 40 X и 90Х), вспомогательный микроскоп малой степени увеличения, который используется вместо окуляра, осветитель и светофильтр.

Как правило, обычный конденсатор микроскопа заменяют фазовым и при этом необходимо проверить, чтоб этот конденсатор правильно и точно вошёл в держатель, и в процессе подъёма его передняя линза становилась вровень с предметным столиком микроскопа. Объективы также необходимо заменить на фазовые.

Для начала следует установить правильное освещение для объекта. Для этого осветительную лампу ставят на расстоянии пятнадцати-двадцати сантиметров от самого микроскопа, сужают диафрагму осветителя и направляют лучи на поверхность плоского зеркала, таким образом, чтоб точное и отчётливое изображение накаленной нити лампы оказалось в самом центре зеркала. Зеркало двигают, отбрасывая свет на поверхность диафрагмы конденсатора, которую затем полностью открывают.

Если увеличение слишком маленькое и его не достаточно, то в таких случаях устанавливают препарат для излучения. Опуская и поднимая конденсатор, выходит наиболее резкое изображение препарата при условии закрытой диафрагмы осветителя. Если же поле зрения всё-таки оказывается слишком освещённым, в таких случаях ставят дополнительный светофильтр. С помощью лёгких передвижений зеркал ярко освещённое пятно двигают в центр поля зрения и затем открывают диафрагму осветителя, таким образом, чтоб все поля зрения были полностью и равномерно освещены. На этом этапе заканчивается установка света.

Вместо окуляра устанавливают вспомогательный микроскоп. Ставят также тот фазовый объектив, который будут использовать и соответствующую ему кольцевую диафрагму конденсатора. При передвижении окулярной части вспомогательного микроскопа изучают изображение кольцевой щели диафрагмы конденсатора, то есть светлое кольцо, а также изображение фазовой пластинки в объективе – тёмное кольцо, для того, чтоб узнать, насколько совмещены эти два изображения.

Для того чтоб получить фазовый контраст нужно более полно совместить изображения этих двух колец. Данный процесс выполняется с помощью центрировочных винтов фазового конденсатора, благодаря которым щель конденсорной диафрагмы движется настолько, чтоб её изображение совместилось с изображением фазовой тёмной пластинки. Вспомогательный микроскоп достают из тубуса и устанавливают на его месте рабочий окуляр, после чего изучают необходимый объект.

Стоит также отметить основные условия успешного процесса подготовки фазово-контрастного исследования:

  • Правильное расположение света;
  • Полностью открытая диафрагма фазового конденсора;
  • Полное соответствие номера кольцевой диафрагмы фазового конденсора относительно увеличению фазового объектива;
  • Тщательное совмещение тёмного изображения фазовой пластинки, а также светлого изображения кольцевой диафрагмы при помощи вспомогательного микроскопа.
error: