Основные факторы, влияющие на микроорганизмы. Внешняя среда микроорганизмов Влияние высушивания на микроорганизмы кратко

Лекция № 10

Словарик

СЫРЬЕ – сырые материалы, предназначенные для дальнейшей обработки. Лекарственное сырье.

ПАСТИ – следить за пасущимся скотом, домашними животными; сущ. Выпас.

ЗАКУПОРИТЬ - плотно закрыть, заткнуть.

УВЯДАТЬ – вянуть. Цветы увядают.

КАРЛИК – растение неестественно маленького роста.

ОТРАВА – ядовитое вещество.

МЫТЬ – смыть, смывать, сущ. Смыв.

ШОК – тяжелое расстройство функций организма из-за физического повреждения;

ПОКАЧИВАТЬ (приводить в движение) -слегка качать.

БЫСТРО ≠ МЕДЛЕННО.

Влияние факторов окружающей среды на микроорганизмы. Стерилизация. Методы и аппаратура. Контроль качества стерилизации. Понятие о дезинфекции, асептике и антисептике.

На микроорганизмы влияют физические, химические и биологические факторы внешней среды. Физические факторы : температура, лучистая энергия, высушивание, ультразвук, давление, фильтрация. Химические факторы : реакция среды (рН), вещества различной природы и концентрации. Биологические факторы – это взаимоотношения микроорганизмов друг с другом и с макроорганизмом, влияние ферментов, антибиотиков.

Факторы окружающей среды могут оказывать на микроорганизмы благоприятное воздействие (стимуляция роста) и отрицательное влияние : микробицидное действие (уничтожающее) и микробостатическое действие (подавление роста), а также мутагенное действие.

Действие температуры на микроорганизмы.

Температура – важный фактор, влияющий на жизнедеятельность микроорганизмов. Для микроорганизмов различают минимальную, оптимальную и максимальную температуру. Оптимальная – температура, при которой происходит наиболее интенсивное размножение микробов. Минимальная – температура, ниже которой микроорганизмы не проявляют жизнедеятельности. Максимальная – температура, выше которой наступает гибель микроорганизмов.

По отношению к температуре различают 3 группы микроорганизмов:

2. Мезофилы. Оптимум – 30-37°С . Минимум – 15-20°С. Максимум – 43-45°С. Обитают в организме теплокровных животных. К ним относятся большинство патогенных и условно-патогенных микроорганизмов.

3. Термофилы. Оптимум – 50-60°С. Минимум - 45°С. Максимум - 75°С . Обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна. Они не способны размножаться в организме теплокровных животных, поэтому не имеют медицинского значения.


Благоприятное действие оптимальной температуры используется при выращивании микроорганизмов с целью лабораторной диагностики, приготовления вакцин и других препаратов.

Тормозящее действие низких температур используется при хранении продуктов и культур микроорганизмов в условиях холодильника. Низкая температура приостанавливает гнилостные и бродильные процессы. Механизм действия низких температур – затормаживание в клетке процессов метаболизма и переход в состояние анабиоза.

Губительное действие высокой температуры (выше максимальной) используетсяпри стерилизации . Механизм действия – денатурация белка (ферментов), повреждение рибосом, нарушение осмотического барьера. Наиболее чувствительны к действию высокой температуры психрофилы и мезофилы. Особую устойчивость проявляют споры бактерий.

Действие лучистой энергии и ультразвука на микроорганизмы.

Различают неионизирующее (ультрафиолетовые и инфракрасные лучи солнечного света) и ионизирующее излучение (g-лучи и электроны высоких энергий).

Ионизирующее излучение обладает мощным проникающим действием и повреждает клеточный геном. Механизм повреждающего действия: ионизация макромолекул, что сопровождается развитием мутаций или гибелью клетки. При этом летальные дозы для микроорганизмов выше, чем для животных и растений.

Механизм повреждающего действия УФ-лучей : образование димеров тимина в молекуле ДНК , что прекращает деление клеток и служит основной причиной их гибели. Повреждающее действие УФ-лучей в большей мере выражено для микроорганизмов, чем для животных и растений.

Ультразвук (звуковые волны 20 тыс. гц)обладает бактерицидным действием. Механизм: образование в цитоплазме клетки кавитационных полостей , которые заполняются парами жидкости и в них возникает давление до 10 тыс. атм. Это приводит к образованию высокореактивных гидроксильных радикалов, к разрушению клеточных структур и деполимеризации органелл, денатурации молекул.

Ионизирующее излучение, УФ-лучи и ультразвук используются для стерилизации.

Действие высушивания на микроорганизмы.

Вода необходима для нормальной жизнедеятельности микроорганизмов. Снижение влажности среды приводит к переходу клеток в состояние покоя, а затем и к гибели. Механизм губительного действия высушивания: обезвоживание цитоплазмы и денатурация белков.

Более чувствительны к высушиванию патогенные микроорганизмы: возбудители гонореи, менингита, брюшного тифа, дизентерии, сифилиса и др. Более устойчивы споры бактерий, цисты простейших, бактерии, защищенные слизью мокроты (туберкулезные палочки).

В практике высушивание используется для консервирования мяса, рыбы, овощей, фруктов, при заготовке лекарственных трав .

Высушивание из замороженного состояния под вакуумом – лиофилизация или лиофильная сушка. Ее используют для сохранения культур микроорганизмов, которые в таком состоянии годами (10-20 лет) не теряют жизнеспособности и не меняют свойств. Микроорганизмы находятся при этом в состоянии анабиоза. Лиофилизация используется в производстве препаратов из живых микроорганизмов: эубиотиков, фагов, живых вакцин против туберкулеза, чумы, туляремии, бруцеллеза, гриппа и др.

Действие химических факторов на микроорганизмы.

Химические вещества по-разному влияют на микроорганизмы. Это зависит от природы, концентрации и времени действия химических веществ. Они могут стимулировать рост (используются как источники энергии), оказывать микробицидное, микробостатическое , мутагенное действие или могут быть безразличными для процессов жизнедеятельности

Например: 0,5-2% раствор глюкозы – источник питания для микробов, а 20-40% раствор оказывает угнетающее действие.

Для микроорганизмов необходимо оптимальное значение рН среды . Для большинства симбионтов и возбудителей заболеваний человека – нейтральная, слабощелочная или слабокислая среда. При росте рН сдвигается чаще в кислую сторону, рост микроорганизмов при этом приостанавливается. А затем наступает гибель. Механизм: денатурация ферментов гидроксильными ионами, нарушение осмотического барьера клеточной мембраны.

Химические вещества, которые обладают противомикробным действием, используются для дезинфекции, стерилизации и консервации.

Действие биологических факторов на микроорганизмы.

Биологические факторы – это различные формы влияния микробов друг на друга, а также действие на микроорганизмы факторов иммунитета (лизоцим, антитела, ингибиторы, фагоцитоз) во время их пребывания в макроорганизме. Совместное существование различных организмов – симбиоз . Выделяют следующие формы симбиоза.

Мутуализм – такая форма сожительства, когда оба партнера получают взаимную выгоду (например, клубеньковые бактерии и бобовые растения).

Антагонизм – форма взаимоотношений, когда один организм наносит вред (вплоть до гибели) другому организму своими продуктами метаболизма (кислоты, антибиотики, бактериоцины), благодаря лучшей приспособленности к условиям среды, путем непосредственного уничтожения (например, нормальная микрофлора кишечника и возбудители кишечных инфекций).

Метабиоз – форма сожительства, когда один организм продолжает процесс, вызванный другим (использует его продукты жизнедеятельности), и освобождает среду от этих продуктов. Поэтому создаются условия для дальнейшего развития (нитрифицирующие и аммонифицирующие бактерии).

Сателлизм – один из сожителей стимулирует рост другого (например, дрожжи и сарцины вырабатывают вещества, способствующие росту других, более требовательных к питательным средам, бактерий).

Комменсализм – один организм живет за счет другого (извлекает выгоду), не причиняя ему вреда (например, кишечная палочка и организм человека).

Хищничество – антагонистические взаимоотношения между организмами, когда один захватывает, поглощает и переваривает другой (например, кишечная амеба питается кишечными бактериями).

Стерилизация.

Стерилизация – это процесс полного уничтожения в объекте всех жизнеспособных форм микробов, в том числе спор.

Различают 3 группы методов стерилизации: физические, химические и физико-химические. Физические методы: стерилизация высокой температурой, Уф облучением, ионизирующим облучением, ультразвуком, фильтрованием через стерильные фильтры. Химические методы – использование химических веществ, а также газовая стерилизация. Физико-химические методы – совместное использование физических и химических методов. Например, высокая температура и антисептики.

Стерилизация высокой температурой.

К этому методу относятся: 1) стерилизация сухим жаром ; 2) стерилизация паром под давлением ; 3) стерилизация текучим паром ; 4) тиндализация и пастеризация ; 5) прокаливание ; 6) кипячение .

Стерилизация сухим жаром.

Метод основан на бактерицидном действии нагретого до 165-170°С воздуха в течение 45 мин.

Аппаратура: сухожаровой шкаф (печь Пастера) . Печь Пастера – металлический шкаф с двойными стенками, обшитый снаружи материалом, плохо проводящим тепло (асбест). Нагретый воздух циркулирует в пространстве между стенками и выходит наружу через специальные отверстия. При работе необходимо строго следить за нужной температурой и временем стерилизации. Если температура будет более высокой, то произойдет обугливание ватных пробок, бумаги, в которую завернута посуда, а при более низкой температуре требуется более длительная стерилизации. По окончании стерилизации шкаф открывают только после его остывания, иначе стеклянная посуда может потрескаться из-за резкой смены температуры.

а) стеклянные, металлические, фарфоровые предметы, посуда, завернутые в бумагу и закрытые ватно-марлевыми пробками для сохранения стерильности (165-170°С, 45 мин);

б) термостойкие порошкообразные лекарственные средства - тальк, белая глина, окись цинка (180-200°С, 30-60 мин);

в) минеральные и растительные масла, жиры, ланолин, вазелин, воск (180-200°С, 20-40 мин).

Стерилизация паром под давлением.

Наиболее эффективный и широко применяемый в микробиологической и клинической практике метод.

Метод основан на гидролизующем действии пара под давлением на белки микробной клетки. Совместное действие высокой температуры и пара обеспечивает высокую эффективность этой стерилизации, при которой погибают самые стойкие споровые бактерии.

Аппаратура – автоклав. Автоклав состоит из 2-х металлических цилиндров, вставленных друг в друга с герметически закрывающейся крышкой, завинчивающейся винтами. Наружный котел – водопаровая камера, внутренний – стерилизационная камера. Имеется манометр, паровыпускной кран, предохранительный клапан, водомерное стекло. В верхней части стерилизационной камеры – отверстие, через которое пар проходит из водопаровой камеры. Манометр служит для определения давления в стерилизационной камере. Между давлением и температурой существует определенная зависимость: 0,5 атм - 112°С, 1-01,1 атм – 119-121°С, 2 атм - 134°С. Предохранительный клапан – для защиты от чрезмерного давления. При повышении давления выше заданного, клапан открывается и выпускает лишний пар. Порядок работы. В автоклав наливают воду, уровень которой контролируют по водомерному стеклу. В стерилизационную камеру помещают материал и плотно завинчивают крышку. Паровыпускной кран открыт. Включают нагрев. После закипания воды кран закрывают лишь тогда, когда будет вытеснен весь воздух (пар идет непрерывной сильной сухой струей). Если кран закрыть раньше, показания манометра не будут соответствовать нужной температуре. После закрытия крана, в котле постепенно повышается давление. Начало стерилизации – тот момент, когда стрелка манометра показывает заданное давление. По истечении срока стерилизации прекращают нагрев и охлаждают автоклав до возвращения стрелки манометра к 0. Если выпустить пар раньше, жидкость может вскипеть из-за быстрой смены давления и вытолкнуть пробки (стерильность нарушается). Когда стрелка манометра вернется к 0, осторожно открывают паровыпускной кран, спускают пар и затем вынимают стерилизуемые объекты. Если не выпустить пар после возвращения стрелки к 0, вода может конденсироваться и смочить пробки и стерилизуемый материал (стерильность нарушится).

Материал и режим стерилизации:

а) стеклянная, металлическая, фарфоровая посуда, белье, резиновые и корковые пробки, изделия из резины, целлюлозы, древесины, перевязочный материал (вата, марля) (119 - 121°С, 20-40 мин));

б) физиологический раствор, растворы для инъекций, глазные капли, дистиллированная вода, простые питательные среды - МПБ, МПА(119-121°С, 20-40 мин);

в) минеральные, растительные масла в герметически закрытых сосудах (119-121°С, 120 мин);

Стерилизация текучим паром.

Метод основан на бактерицидном действии пара (100°С) в отношении только вегетативных клеток.

Аппаратура – автоклав с незавинченной крышкой или аппарат Коха .

Аппарат Коха - это металлический цилиндр с двойным дном, пространство в котором на 2/3 заполнено водой. В крышке – отверстия для термометра и для выхода пара. Наружная стенка облицована материалом, плохо проводящим тепло (линолеум, асбест). Начало стерилизации – время от закипания воды и поступления пара в стерилизационную камеру.

Материал и режим стерилизации. Этим методом стерилизуют материал, который не выдерживает температуру выше 100°С : питательные среды с витаминами, углеводами (среды Гисса, Эндо, Плоскирева, Левина), желатином, молоко.

При 100°С споры не погибают, поэтому стерилизацию проводят несколько раз - дробная стерилизация - 20-30 мин ежедневно в течение 3-х дней.

В промежутках между стерилизациями материал выдерживают при комнатной температуре для того, чтобы проросли споры в вегетативные формы. Они будут погибать при последующем нагревании при 100°С.

Тиндализация и пастеризация.

Тиндализация - метод дробной стерилизации при температуре ниже 100°С. Она используются для стерилизации объектов, которые не выдерживают 100°С: сыворотка, асцитическая жидкость, витамины . Тиндализация проводится в водяной бане при 56°С по 1 часу 5-6 дней.

Пастеризация - частичная стерилизация (споры не погибают), которая проводится при относительно низкой температуре однократно. Пастеризацию проводят при 70-80°С, 5-10 мин или при 50-60°С, 15-30 мин. Пастеризация используется для объектов, теряющих свои качества при высокой температуре.Пастеризацию, например, используют для некоторых пищевых продуктов: молока, вина, пива . При этом не повреждается их товарная ценность, но споры остаются жизнеспособными, поэтому эти продукты нужно хранить на холоде.

Жизнедеятельность микроорганизмов зависит от условий существования. Благоприятными условиями их существования является влажность, тепло, наличие питательных веществ. Тормозят развитие микроорганизмов высушивание, кислая среда, низкие температуры, отсутствие питательных веществ и др. Искусственно регулируя условия существования микробов, можно прекратить их размножение или уничтожить их.

Большинство пищевых продуктов по химическому составу является благоприятной средой для существования микробов. Поэтому хранить пищевые продукты можно только при неблагоприятных условиях для микроорганизмов. Говоря о влиянии физических факторов окружающей среды на микроорганизмы, подразумевают условия внешней среды, влияющие на их развитие и делят таковые на три основные группы: физические, химические и биологические. К физическим условиям (факторам) относятся: температура, влажность среды, концентрация веществ, растворенных в среде; излучение.

Влияние температуры на микроорганизмы.

Развитие всех микроорганизмов возможно при определенной температуре. Известны микроорганизмы, способные существовать при низких (-8°С и ниже) и при повышенных температурных условиях, например, обитатели горячих источников поддерживают жизнедеятельность при температуре 80-95°С. Большинство микробов предпочитает температурные пределы 15-35°С. Различают:

  • оптимальную, наиболее благоприятную для развития температуру;
  • максимальную, при которой прекращается развитие микробов данного вида;
  • минимальную, ниже которой микробы прекращают развитие.

По отношению к уровню температуры микроорганизмы разделяют на три группы:

  • психрофиты – хорошо растут при пониженных температурах,
  • мезофиллы – нормально существуют при средних температурах,
  • термофилы – существуют при постоянно высоких температурах.

Микробы сравнительно быстро приспосабливаются к значительным изменениям температуры. Поэтому незначительное снижение или повышение уровня температуры не гарантирует прекращения развития микроорганизмов.

Влияние высоких температур.

Температуры, значительно превышающие максимальные, вызывают гибель микроорганизмов. В воде большинство вегетативных форм бактерий при нагревании до 60°С погибают за час; до 70°С — за 10-15 минут, до 100°С — за несколько секунд. В воздухе гибель микроорганизмов наступает при значительно более высокой температуре — до 170°С и выше в течение 1-2 часов. Споровые формы бактерий значительно устойчивее к нагреванию, они могут выдерживать кипячение в течение 4-5 часов.

Методы пастеризации и стерилизации основаны на свойстве микробов погибать под действием высоких температур. Пастеризация — осуществляется при температуре 60-90°С, при этом погибают вегетативные формы клеток, а споровые остаются жизнеспособными. Поэтому пастеризованные продукты следует быстро охлаждать и хранить в условиях охлаждения. Стерилизация — это полное уничтожение всех форм микроорганизмов, включая споровые. Стерилизацию осуществляют при температуре 110-120°С и повышенном давлении.

Однако споры не погибают мгновенно. Даже при 120°С гибель их наступает через 20-30 минут. Стерилизуют пищевые консервы, некоторые медицинские материалы, субстраты, на которых выращивают микроорганизмы в лабораториях. Эффект стерилизации зависит от количественного и качественного состава микрофлоры объекта стерилизации, его химического состава, консистенции, объема, массы и др.

Влияние низких температур.

Чаще всего действие низких температур связано не с гибелью микроорганизмов, а с торможением и прекращением их развития. Низкую температуру микроорганизмы переносят значительно лучше. Многие болезнетворные микробы, попадающие в окружающую среду, способны переносить суровые зимы, не теряя болезнетворности. Наиболее негативно на развитие микроорганизмов влияет температура, при которой замерзает содержимое клетки.

Тормозящее действие низких температур на микробы используют для хранения различных продуктов в охлажденном виде при температуре 0-4°С, и замороженном – при температуре — 6-20°С и ниже. Действие низких температур в замороженных продуктах усиливает влияние повышенного осмотического давления. Поскольку большая часть воды перешла в лед, в оставшейся жидкой части воды оказались все растворенные вещества, содержавшиеся в массе продукта. Это вызывает повышенное осмотическое давление, которое, в свою очередь, тормозит развитие микробов.

Замораживание используют для хранения мяса, рыбы, плодов, овощей полуфабрикатов, кулинарных изделий, готовых блюд и др. Прекращение развития микробов действует только до тех пор, пока продолжается действие низкой температуры. При повышении температуры начинается бурное развитие и размножение микробов, что вызывает порчу пищевых продуктов.

Следовательно, низкая температура только замедляет биохимические процессы, не имея стерилизующего эффекта. Многократное замораживание одних и тех же продуктов способствует быстрому приспособлению микробов к низким температурам и усиливает их жизнеспособность. Поэтому надо предотвращать колебания температуры во время хранения продуктов.

Температура является наиболее значительным фактором, оказывающим влияние на жизнедеятельность микробов. Температура, необходимая для роста и размножения бактерий одного и того же вида, варьирует в широких пределах. Различают температурный оптимум, минимум и максимум.

Температурный оптимум соответствует физиологической норме данного вида микробов, при которой размножение происходит быстро и интенсивно. Для большинства патогенных и условно-патогенных микробов температурный оптимум соответствует 37°С.

Температурный минимум соответствует температуре, при которой данный вид микроба не проявляет жизнедеятельность.

Температурный максимум - температура, при которой рост и размножение микробов прекращается, все процессы метаболизма снижаются и может наступить гибель.

В зависимости от температуры, оптимальной для жизнедеятельности, различают 3 группы микроорганизмов: 1)психрофильные, холодолюбивые, размножающиеся при температуре ниже 20°С (иерсинии, психрофильные варианты клебсиелл, псевдомонады, вызывающие заболевания человека. Размножаясь в пищевых продуктах, они более вирулентны при низких температурах); 2)термофильные, оптимум развития которых лежит в пределах 55°С (в организме теплокровных не размножаются и медицинского значения не имеют); 3)мезофильные, активно размножаются при температуре 20 -40°С, оптимум температуры развития для них 37°С (патогенные для человека бактерии).

Микроорганизмы хорошо выдерживают низкие температуры. На этом основано длительное сохранение бактерий в замороженном состоянии. Однако ниже температурного минимума проявляется повреждающее действие низких температур, обусловленное разрывом клеточной мембраны кристаллами льда и приостановкой метаболических процессов.

Низкая температура приостанавливает гнилостные и бродильные процессы. Это лежит в основе консервации субстратов (в частности, пищевых продуктов) холодом. Губительное действие высокой температуры (выше температурного максимума для каждой группы) используется при стерилизации.Стерилизация - обеспложивание - это процесс умерщвления на изделиях или в изделиях или удаление из объекта микроорганизмов всех видов, находящихся на всех стадиях развития, включая споры (термические и химические методы и средства). Для гибели вегетативных форм бактерий достаточно действия температуры 60°С в течение 20-30 мин; споры погибают при 170°С или при температуре 120°С пара под давлением (в автоклаве).



Асептика - условия и комплекс мероприятий, направленных против возможности попадания микроорганизмов в рану, ткани, органы, полости тела больного при хирургических операциях, перевязках, инструментальных исследованиях, а также на предотвращение микробного и другого загрязнения при получении стерильной продукции на всех этапах технологического процесса.

Рост и размножение микробов происходит при наличии воды, необходимой для пассивного и активного транспорта питательных веществ в цитоплазму клетки. Снижение влажности (высушивание) приводит к переходу клетки в стадию покоя, а затем к гибели. Наименее устойчивыми к высушиванию являются патогенные микроорганизмы - менингококки, гонококки, трепонемы, бактерии коклюша, ортомиксо-, парамиксо- и герпес-вирусы. Микобактерии туберкулеза, вирус натуральной оспы, сальмонеллы, актиномицеты, грибы устойчивы к высушиванию. Особой устойчивостью к высушиванию обладают споры бактерий. Устойчивость к высушиванию повышается, если микробы предварительно замораживают. Для сохранения жизнеспособности и стабильности свойств микроорганизмов в производственных целях используется метод лиофильной сушки - высушивание из замороженного состояния под глубоким вакуумом.

В процессе лиофилизации производят: 1) предварительное замораживание материала при t -40 - -45°С в спиртовых ваннах в течение30-40мин; 2) осуществляют сушку из замороженного состояния в вакууме в сублимационных аппаратах в течение 24 - 28 часов.

Процесс высушивания имеет 2 фазы: сублимация льда при t ниже 0°С и десорбция - удаление части свободной и связанной воды при t выше 0°С.

Лиофилизацию используют для получения сухих препаратов, когда не происходит денатурации белков и не изменяется структура материала антисыворотки, вакцины, сухая бактериальная масса). В лабораторных условиях лиофилизированные культуры микробов сохраняются в течение 10-20 лет, причем культура остается чистой и не подвергается мутациям.

Действие лучистой энергии на микроорганизмы. Солнечный свет,особенно его ультрафиолетовый и инфракрасный спектры, губительно действуют на вегетативные формы микробов в течение нескольких минут.

Инфракрасное излучение используется для стерилизации объектов, которая достигается за счет теплового воздействия температурой 300°С в течение 30 мин. Инфракрасные лучи оказывают воздействие на свободнорадикальные процессы, в результате чего нарушаются химические связи в молекулах микробной клетки.

Для дезинфекции воздуха помещений лечебно-профилактических учреждений и аптек широко используются ртутно-кварцевые и ртутно-увиолевые лампы, являющиеся источником ультрафиолетовых лучей. При действии УФЛ с длиной волны 254 нм в дозе 1,5-5 мк Вт т/с на 1 см 2 при 30-ти минутной экспозиции погибают все вегетативные формы бактерий. Повреждающее действие УФ излучения вызвано повреждением ДНК микробных клеток, приводящим к мутациям и гибели.

Ионизирующая радиация обладает мощным проникающим и повреждающим клеточный геном микробов действием. Для стерилизации инструментов одноразового использования (игл, шприцев) используют гамма-излучение, источником которого являются радиоактивные изотопы 60 Со и 137 Сз в дозе 1,5-2 МN.рад. Этим методом стерилизуют также системы переливания крови и шовный материал. Действие ультразвука в опреде­ленных частотах на микроорганизмы вызывает деполимеризацию органелл клетки, денатурацию входящих в их состав молекул в результате локального нагревания или повышения давления. Стерилизация объектов ультразвуком осуществляется на промышленных предприятиях, так как источником УЗ являются мощные генераторы. Стерилизации подвергаются жидкие среды, в которых убиваются не только вегетативные формы, но и споры.

Пастеризация - стерилизация при 65-70°С в течение 1 часа для уничтожения бесспоровых микроорганизмов (молоко освобождается от бруцелл, микобактерий туберкулеза, шигелл, сальмонелл, стафилококков). Хранят на холоде.

Тиндализация -дробная стерилизация материалов при 56-58°С в течение 1 часа 5-6 дней подряд. Применяется для стерилизации легко разрушающихся при высокой температуре веществ (сыворотка крови, витамины и др.).

Стерилизация фильтрованием - освобождение от микробов материала, который не может быть подвергнут нагреванию (сыворотка крови, ряд лекарств). Используются фильтры с очень мелкими порами, не пропускающими микробы: из фарфора (фильтр Шамберлана), каолина, асбестовых пластинок (фильтр Зейтца). Фильтрование происходит под повышенным давлением, жидкость нагнетается через поры фильтра в приемник или создается разрежение воздуха в приемнике и жидкость всасывается в него через фильтр. К фильтрующему прибору присоединяется нагнетаю­щий или разрежающий насос. Прибор стерилизуют в автоклаве.

Стерилизацию сухим жаром осуществляют в сухожаровых шкафах (печь Пастера). Сухим жаром стерилизуют лабораторную посуду Режим стерилизации: 160°С - 60 мин, 180°С -15 мин, 200°С - 5 мин. Жидкости, питательные среды, предметы из резины и синтетических материалов нельзя стерилизовать сухим жаром.

Стерилизации паром

Существует 2 режима стерилизации.

1. Стерилизация текучим паром в автоклаве или аппарате Коха при незавинченной крышке и открытом выпускном кране, когда антибактериальное действие пара проявляется в отношении вегетативных форм. Так стерилизуют среды с витаминами и углеводами, мочевиной, молоком, картофелем и желатиной. Для полного обеспложивания применяют дробную стерилизацию (при 100°С) 20-30 мин 3 дня.

2. Стерилизация паром под давлением в автоклаве - наиболее эффективный метод обеспложивания. При однократной обработке при 1-2 атм в течение 15-25 мин. погибают как вегетативные, так и споровые формы бактерий. Этим методом стерилизуют перевязочный материал, операционное белье, хирургические инструменты, лабораторную посуду, инфицированный материал, инъекционные растворы. Материал помещают в емкости (биксы). На дно бикса помещают прокладки из ткани, впитывающие влагу после стерилизации. Стерильность материала сохраняется 3 суток.

Паром под давлением стерилизуют также и питательные среды, кроме сред, содержащих нативные белки, жидкости, приборы, имеющие резиновые части. Простые среды (МПА, МПБ) стерилизуют 20 мин при 120°С (1 атм). Среды, содержащие нативные белки и углеводы, при этой температуре нельзя стерилизовать, т. к. это легко изменяющиеся от нагревания вещества. Среды с углеводами стерилизуют дробно при 100°С или при 112°С (0,5 атм) 10-15 мин. Различные жидкости, приборы, имеющие резиновые шланги, пробки, бактериальные свечи и фильтры стерилизуют при 120°С(1 атм) в течение 20 мин.

Контроль стерилизации

Для контроля используют различные тесты, представляющие чаще всего порошкообразные вещества, меняющие консистенцию или цвет при достижении определенной температуры стерилизуемого материала (бензойная кислота 121°С, антипирин - 113°С, резорцин - 110°С). В настоящее время используются бумажные индикаторы стерилизации одноразового применения для контроля параметров режимов работы паровых и воз­душных стерилизаторов. Бумажные полоски закладываются в разных местах со стерилизуемым материалом и после окончания цикла сверяют изменение окраски индикатора с эталоном. Если индикатор светлее эта­лона, стерилизуемые объекты подлежат повторной стерилизации.

Для экспресс-контроля концентраций рабочих растворов для дезинфекции также используются индикаторные полоски (Дезаконт-ПВ-01).

Цели занятия:

1. Изучить сущность дыхания бактерий, классифицировать микробы по типу дыхания.

2. Освоить методику посевов и выделения чистых культур аэробов и анаэробов.

3. Изучить характер влияния на микроорганизмы физических и хими­ческих факторов.

4. Освоить методы стерилизации и принцип работы автоклава и сухо-жаровогр шкафа.

Учебно-целевые задачи:

Знать:

1. Сущность дыхания бактерий. Классификациямикробов по типу дыхания.

2. Аэробный и анаэробный типы биологического окисления.

3. Принципы культивирования анаэробных бактерий.

4. Этапы выделения чистых культур микроорганизмов, их идентификация.

5. Действие на микроорганизмы физических и химическихфакторов.Стерилизация и дезинфекция. Асептика и антисептика.

Уметь:

1. Готовить посуду к стерилизации в сухожаровом шкафу и автоклаве.

2. Описать культуральные свойства бактерий.

3. Освоить методику создания анаэробных условий.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Просматривая извлеченные из термостата чашки с пластинчатым агаром, засеянные в первый день исследования, обращают внимание на наличие колоний разных типов по форме, цвету величине, консистенции. Каждому виду микроба свойственен определенный характер колоний.Этопомогает выбрать колонию искомого микроба и поставить диагноз заболевания. Снимают изолированную колонию петлей и пересевают на скошенный агар, а из остатка пересеянной колонии готовят микропрепарат и исследуют его, окрасив по Граму После инкубации посева в термостатена скошенном агаре вырастает чистая культура микроба.

ЛАБОРАТОРНАЯ РАБОТА

1. Бригада студентов учитывает пересевы бактериальных культур.

2. Каждый студент изучает и подробно описывает различные типы колоний, выросшие на чашках. Отсевает одну из колоний на скошенный агар, а из остатка бактерий на петле делает мазок, окрашиваетпо Граму и микроскопирует. Результаты записывают в протокол.

ДЕМОНСТРАЦИИ

1. Колонии на пластинчатом агаре в чашках Петри. Отсев одной колонии на скошенный агар.

2. Рассмотрение различных методов культивирования анаэробов: анаэростат, посев по Фортнеру посев на среду Китт-Тароцци, столбик среды Вильсона-Блера, использование газ-пакета.

3. Демонстрация аппаратуры для стерилизации: автоклавы, сухожаровые шкафы, электрический стерилизатор, фарфоровые свечи и фильтры Зейтца. Термостат и терморегуляторы, свертыватель Коха. Тесты контроля стерилизации.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называется стерилизацией?

2. Что такое дезинфекция?

3. Что такое асептика и антисептика? "

4. Что такое пастеризация?

5. Каковы условия стерилизации в автоклаве?

6. Каковы условия стерилизации в сухожаровых печах Пастера?

7. Какие тесты контроля стерилизации вы знаете?

8. Что такое дробная стерилизация и в каких случаях к ней прибегают?

9. Почему в отдельных случаях при пересеве одной колонии получаем рост смеси бактерий?

10. Какие свойства необходимо учитывать при изучении колоний?

11. Как характеризуется рост бактерий на жидких и полужидких

питательных средах?

12. В чем сущность аэробного типа окисления?

13. В чем сущность анаэробного типа окисления?

14. Какие среды применяют для культивирования анаэробов?

15. Какие существуют методы культивирования анаэробов?

16. Какой способ чаще всего применяется для стерилизациистеклянной лабораторной посуды?

17. Как стерилизуются дифференциально-диагностические среды, содержащие углеводы?

18. Как стерилизуют сывороточные питательные среды?

19. Как стерилизуют Простые питательные среды?

20. Какие существуют методы выращивания облигатных анаэробов?

21. Какие бактерии называют микроаэрофилами?

22. Какие бактерии называют психрофилами, мезофилами, термофилами?


ЗАНЯТИЕ №7

Темы:

Методы выделения и идентификация чистых культур аэробных бактерий (продолжение): биохимическая активность бактерий.

Антибиотики.

План занятия:

1. Идентификация выделеннойчистой культуры по биохимическимсвойствам.

2. Антагонизм микроорганизмов.

3. Классификации антибиотиков.

4. Механизмы антимикробного действия важнейших групп антибиотиков.

5. Методы определения антибиотиков в жидкостях организма.

6. Количественное и качественное определение чувствительности бактерий к антибиотикам.

7. Механизмы развития антибиотикорезистентностибактерий и пути еепреодоления.

8. Осложнения при лечении антибиотиками.

ВВОДНЫЕ ЗАМЕЧАНИЯ

А . Идентификация выделенной на скошенном агаре культуры бактерий проводится после установления чистоты (однородности) культуры по морфологическим, тинкториальным и культуральным свойствам. Определяют ферментативные (биохимические) свойства микробов, фаго - и колициночувствительность, токсигенность и другие признаки, характеризующие их видовую принадлежность. В некоторых случаях у выделенных бактерий определяют также эпидемиологические маркеры (серовар, фаготип, биовар, колициновар), с помощью которых можно установить очаги инфекции и пути ее распространения.

Симбиоз - взаимоотношения микроорганизмов, при которых два или более вида микроорганизмов при совместном развитии создают для себя взаимовыгодные условия. Типичный пример таких взаимоотношений - совместное развитие аэробных и анаэробных бактерий. В кефирных зернах одновременно развиваются молочнокислые бактерии и дрожжи, при этом молочнокислые бактерии, испытывающие потребность в витаминах, получают их в результате развития дрожжей, последние получают благоприятные условия для развития за счет подкисления среды. Приметабиозе продукты жизнедеятельности одного микроорганизма, содержащие значительное количество энергии, потребляются другими микроорганизмами в качестве питательного материала. Между ними складываются синтрофные связи, при которых субстрат используется одновременно несколькими видами микробов. В частности, некоторые инфекционные заболевания человека являются полимикробными, т. е. вызываются синтрофными ассоциациями бактерий. Газовая гангрена, например, обусловлена действием нескольких возбудителей из рода Clostridium в ассоциации с различными аэробными бактериями, главным образом стафилококками и стрептококками.

Разновидностью метабиоза являетсясателлитизм, для которого характерно, что одни микроорганизмы выделяют в среду ростовые вещества (аминокислоты, витамины и др.), стимулирующие развитие другого микроорганизма или макроорганизма - хозяина, как например нормальная микрофлора у человека. Присинергизме у членов микробной ассоциации взаимно повышается физиологическая активность за счет выделения продуктов, стимулирующих их развитие.

Помимо благоприятных взаимоотношений между микроорганизмами наблюдаются и такие, при которых один вид микроорганизмов полностью или частично подавляет рост и развитие других видов, т. е между ними при их развитии наблюдаетсяантагонизм. Причины, приводящие к антагонизму, разнообразны:

1. Антагонизм, складывающийся при совместном развитии разных видов, нуждающихся в одних и тех же питательных веществах. В этом случае преимущества будут у того микроорганизма, скорость роста которого выше скорости роста других. Так, при совместном высеве на питательный субстрат, необходимый одновременно для роста и эубактерий и актиномицетов, эубактерии будут развиваться быстрее.

2. Антагонизм, связанный с образованием микроорганизмами органических кислот, спиртов, или других продуктов обмена, которые изменяют условия среды, делая ее непригодной для развития других микроорганизмов. В процессе смены микрофлоры свежего молока в нем содержатся как молочнокислые, так и гнилостные бактерии. Вначале они развиваются одинаково, но в результате размножения молочнокислых бактерий накапливается молочная кислота и молоко значительно подкисляется. В этих условиях наблюдается подавление роста, а затем и полная гибель гнилостных бактерий.

3. Антагонизм, связанный с образованием и выделением в окружающую средуантибиотических веществ (антибиотиков, бактериоцинов и др.).

Процессхищничества состоит в том, что некоторые микроорганизмы разрушают клетки других видов микроорганизмов и используют их в качестве питательного субстрата. К числу микроорганизмов-хищников относят главным образом миксоформы (миксобактерии, миксомицеты).

Наиболее существенной формой конкурентных взаимоотношений, имеющей важное практическое использование, является образование микробами-продуцентами специфических продуктов обмена, угнетающих или полностью подавляющих развитие микроорганизмов других видов.

Практическое значение антагонизма для медицины: 1) применение бактериальных препаратов, содержащих живые антагонистически действующие микроорганизмы, для угнетения патогенных и условно-патогенных микробов и лечения нарушений нормального микробиоценоза кишечника (дисбактериоза) - колибактерин, бифидумбактерин, лактобактерин и др.; 2) использование микробов-антагонистов для производства антибиотиков.

Антибиотики - вещества, образуемые различными живыми клеточными структурами, способные подавлять рост и вызывать гибель определенных микроорганизмов. По происхождению антибиотики подразделяют на следующие группы:

Антибиотики, образуемые бактериями (грамицидин, полимиксин и др.);

Антибиотики, образуемые актиномицетами (линкомицин и др.);

Антибиотики, образуемые грибами (пенициллин, цефалоспорины и др.);

Антибиотики, образуемые растениями (фитонциды: аллицин, рафанинидр.);

Антибиотики, образуемые животными клетками (экмолин, эритрин);

Синтетические и полусинтетические антибиотики.

По химическому составу антибиотики относятся к следующим основным группам:

Ароматические соединения (левомецитин);

Тетрациклины, содержащие четыре конденсированных шестичленных цикла (тетрациклины и др.);

Аминогликозидные соединения, в составе которых имеются аминосахара (стрептомицин и др.);

Макролиды: содержат макроциклическоекольцо, связанное с аминосахарами (эритромицин и др.);

Ациклические (полиеновые) соединения с несколькими двойными связями - /СН=СН/ (нистатин и др.);

(Фтор) хинолоны.

По антимикробному спектру антибиотики подразделяют на две группы: узкого и широкого спектра действия. Антибиотики узкого спектра действуют на определенные группы бактерий (например, пенициллин, оказывающий губительное действие только на шаровидные бактерии, спирохеты и некоторые грамположительные бактерии). Антибиотиками широкого спектра действия являются аминогликозиды, подавляющие рост кислотоустойчивых, многих грамположительных и грамотрицательных бактерий, простейших, риккетсий, хламидий.

Антибактериальное действие антибиотиков измеряют в единицах действия (Е.Д.), содержащихся в 1 мл раствора препарата или в 1 мг химически чистого вещества. За единицу активности принимается то минимальное количество антибиотика, которое задерживает рост стандартного штамма определенного вида микроорганизма в строго определенных условиях.

Механизм антибактериального действия антибиотиков различен. У одних он связан с нарушением или блокированием синтеза клеточной стенки (пенициллины, цефалоспорины). У других - с адсорбцией на ЦПМ и взаимодействием с ее стерольным компонентом, что приводит к быстрой потере клеткой низкомолекулярных водорастворимых веществ цитоплазмы или нарушением жизненно важных функций ЦПМ (нистатин, полимиксины). У третьих - в блокировании синтеза белка рибосомами бактерий и нарушении считывания генетического кода, что нарушает репликацию бактерий (стрептомицин). Антибиотики, обладающие противоопухолевым действием, избирательно подавляют синтез нуклеиновых кислот в клетках злокачественных опухолей, для которых характерен дефект репарационных механизмов, в связи с чем они не в состоянии восстанавливать поврежденную ДНК.

Цели занятия:

1. Изучить сущность и механизм действия различных ферментных систем у бактерий; освоить методику их изучения и применения для идентификации чистых культур.

2. Изучить особенности взаимоотношений между микроорганизмами как основу учения об антибиотизме и антибиотиках.

3. Освоить методы определения антибиотикочувствительности бактерий.

Учебно-целевые задачи:

Знать:

1. Классификация ферментов бактерий, механизмы их действия, методы изучения.

2. Этапы выделения чистых культур микроорганизмов, их идентификация по биохимическим свойствам.

3. Химиотерапия. Понятие о химиотерапевтическом индексе. Принципы атимикробной химиотерапии.

4. Симбиотические и конкурентные взаимоотношения между микроорганизмами.

5. Микробный антагонизм, его механизмы. Микроорганизмы - продуценты антибиотиков.

6. Классификация антибиотиков по химическому строению, происхождению, механизму и спектру антимикробного действия, способам получения.

7. Методы определения антибиотикочувствительности бактерий.

8. Побочное действие антибиотиков на организм человека.

Уметь:

1. Интерпретировать результаты изучения ферментативной активности бактерий и их антибиотикограммы.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Устойчивость ферментных систем бактерий позволяет использовать биохимические свойства бактерий в сочетании с их морфологическими, культуральными и другими признаками для идентификации бактерий и установления микробиологического диагноза. Для определения биохимических свойств исследуемую культуру микробов засевают на специальные дифференциально-диагностические среды, которые в зависимости от состава и своего на­значения можно разделить на 4 группы:

Среды с сахарами или многоатомными спиртами для определения сахаролитической активности;

Среды с химическими веществами, изменяющимися под влиянием

окислительно-восстановительных ферментов, продуцируемых микробами;

В состав дифференциально-диагностической среды обычно входит индикатор, указывающий на наличие или отсутствие расщепления, окисления или восстановления введенного в среду ингредиента.

Сахаролитические свойства, т.е. способность расщеплять сахар и многоатомные спирты с образованием кислоты или кислоты и газа изучают на средах Гисса, которые содержат тот или иной углевод и индикатор. При ферментации бактериями углеводов с образованием кислоты и альдегидов цвет среды меняется за счет находящегося в ней индикатора, что создает впечатление пестроты - «пестрый ряд». В зависимости от изучаемого рода и вида бактерий подбирают среды с соответствующими моно- и дисахаридами (глюкоза, лактоза и др.), полисахаридами (крахмал, гликоген и др.), высшими спиртами (глицерин, маннит и др.), в процессе ферментации которых образуются альдегиды, кислоты и газооб­разные продукты /С02, H2, СН4/, последние накапливаются в «поплавке».

Кроме того, сахаролитическую активность изучают на средах Эндо, Левина, Плоскирева. Микроорганизмы, сбраживая до кислоты находящийся в этой среде молочный сахар, образуют окрашенные колонии (кислота изменяет цвет индикатора). Колонии микробов, не ферментирующих лактозу, бесцветны.

Молоко при росте микробов, сбраживающих лактозу, свертывается. При росте микроорганизмов, образующих амилазу, на средах с растворимым крахмалом происходит его расщепление. Об этом узнают, прибавив к культуре несколько капель раствора Люголя (цвет среды не изме­няется). Нерасщепленный крахмал дает с этим раствором синее окрашивание.

Среда Вильсона-Блера. Готовят из мясо-петонного агара, к которому добавляют глюкозу, Na2SO3, хлористое железо FeCl2. На этой среде возбудитель газовой гангрены образует почернение и разрыв агара. При этом в анаэробных условиях осуществляется восстановление сернокислого натрия до сернистого, последний же вступает в реакцию с хлорным железом, переводя его в сернистое железо, имеющее черный цвет.

Протеолитические ферменты у бактерий изучают на средах с желатином, молоком, сывороткой и пептоном. При посеве уколом в желатин некоторые микробы (холерный вибрион, стафилококк, сибиреязвенная палочка и др.) при комнатной температуре (20-22°С) разжижают его, при­чем различные виды микробов дают характерную для него форму разжижения (послойно в виде гвоздя, елочки и т.д.). При посеве на свер­нутую сыворотку вокруг колоний появляются углубления (разжижение). В молоке происходит расщепление сгустка казеина с образованием пептона, в результате чего оно приобретает желтоватый цвет.

Показателями более глубокого расщепления белка является образование индола, аммиака, сероводорода. Для обнаружения индола по способу Мореля узкие полоски фильтровальной бумаги смачивают горячим насыщенным раствором щавелевой кислоты и высушивают. Индикаторную бумажку помещают между стенкой пробирки с МПА и пробкой. При выделении индола на 2-3-й день нижняя часть полоски бумаги приобретает розовый цвет. Другой, более чувствительный, метод позволяет концентрировать индол на поверхности среды ксилолом или эфиром, а добавление раствора Ковача (парадиметиламинобензальдегида) дает образование красного кольца. Индол образуется при наличии у бактерий фермента триптофаназы.

Сероводород обнаруживают с помощью полоски фильтровальной бумаги, пропитанной раствором ацетата свинца, которую закрепляют между стенкой засеянной пробирки и пробкой. При взаимодействии сероводорода и ацетата свинца бумага чернеет в результате образования сульфида свинца.

Наличие аммиака определяют по посинению розовой лакмусовой бумажки, помещенной между стенкой и пробкой засеянной пробирки.

Наличие уреазы определяют на среде с мочевиной и индикатором фенолротом (начальный цвет среды-желтый). При расщеплении мочевины на аммиак и углекислый газ накапливается аммоний, что сдвигает рН в щелочную сторону и изменяет цвет индикатора в красный.

Определение образования ацетона проводится с помощью реакции Фогес-Проскауэра. Добавление к культуре 40% КОН и 5% альфа-нафтола дает красное окрашивание, т.е. в щелочных условиях ацетон образует с альфа-нафтолом соединение красного цвета - ацетилметилкарбинол.

Утилизацию цитрата в целях выявления способности бактерий использовать его как источник углерода проверяют на среде Симонса. Среда содержит набор солей, агар, неорганический источник азота, цитрат натрия, индикатор бромтимоловый синий. При наличии фермента цитратпермеазы среда подщелачивается и окрашивается в синий цвет. При отсутствии роста бактерий среда остается зеленой.

Система индикаторных бумажек (СИБ) позволяет выявлять самые разнообразные ферменты бактерий. Бумажки пропитаны индикатором, углеводами, аминокислотами, цитратом, ацетатом, малонатом и др. веществами. Утилизация вещества приводит к изменению рН среды, изме­нению цвета индикатора. Имеются наборы, которые содержат от десяти до тридцати тест-бумажек. Посев испытуемой культуры производится в стерильный физиологический раствор (в некоторых случаях в забуференный: рН 5,4-5,6).

Наличие каталазы у аэробов и факультативных анаэробов выявляется внесением петли культуры бактерий в каплю 3% перекиси водорода. При этом выделяются пузырьки O2. У облигатных анаэробов каталаза отсутствует, и перекись водорода оказывает на них губительное действие.

Обнаружение цитохромоксидазы у аэробов проводится путем нанесения и растирания петли культуры на индикаторную бумажку, пропитанную спиртовым раствором альфа-нафтола и 1% водным раствором ментола. Бумажка синеет.

Выявление нитратредуктазы характерно в основном для факультативных анаэробов. Фермент восстанавливает нитраты в нитриты. Нитрат является конечным акцептором электронов. В кислой среде нитраты окисляют иодид калия. Выделившийся йод, реагируя с крахмалом, дает синее окрашивание среды. Тип окисления глюкозы в аэробных или анаэробных условиях устанавливается на среде Хью-Лейфсона. В среде содержится агар, соли, пептон, глюкоза и индикатор бромтимоловый си­ний. Для создания анаэробных условий среда заливается слоем вазелинового масла. Посев выращивают 3-4 суток. Образование кислоты из глюкозы изменяет зеленый цвет среды в желтый. Утилизация глюкозы в аэробных и анаэробных условиях свидетельствует о преобладании бродильных процессов. Аэробы (Vibrio cholerae, Pseudomonas aeruginosa) расщепляют глюкозу в аэробных условиях, анаэробы - только в анаэробных. Факультативные анаэробы (Escherichia coli) утилизирует глюкозу в аэробных и анаэробных условиях.

Гемолитические свойства микроорганизмов изучают при посеве их на среды с кровью. Жидкие среды при разрушении эритроцитов становятся прозрачными, а на плотных средах вокруг колоний появляется прозрачная зона.

Температура. Имеет в жизнедеятельности бактерий большое значение. В зависимости от интенсивности и экспозиции (времени) воздействия температурный фактор может стимулировать рост или, наоборот, вызывать необратимые смертельные изменения микробной клетки. Для каждого вида микроорганизмов существует определенный температурный диапазон роста, в котором различают: оптимальную температуру, наиболее благоприятную для роста и размножения микробов, максимальную и минимальную температуры, выше и ниже которых развитие микроорганизмов прекращается. Оптимальная температура обычно соответствует температурным условиям естественной среды обитания.

Все микроорганизмы по отношению к температуре делятся на три группы, внутри которых границы температурного диапазона варьируют.
Психрофилы (от греч. psychros - холодный) приспособились в процессе эволюции к жизни при низких температурах. Оптимальная температура для их развития 10-20°С, максимальная 30°С и минимальная 0°С. Это главным образом сапрофитные микробы северных морей, почвы, железобактерии.

Мезофилы (от греч. mesos - средний) развиваются в диапазоне 20-45°С; оптимальной для них является температура 30-37°С. К этой обширной группе относятся все патогенные микробы.

Термофилы (от греч. termos - теплый), растущие при температуре выше 55°С, развиваются при оптимальной температуре 50-60°С. Минимальная температура для их развития 25°С, а максимальная 70-80°С. Микробы этой группы обнаруживаются в почве, навозе, воде горячих источников. Среди них много споровых форм.
Неблагоприятное воздействие на микроорганизмы могут оказывать как высокие, так и низкие температуры. Значительно более чувствительны микробы к высоким температурам. Повышение температуры за пределы максимальной для их жизнедеятельности вызывает убыстрение биохимических реакций в клетке, нарушение проницаемости клеточных оболочек, повреждение термочувствительных ферментов. Это влечет за собой расстройство жизненно важных процессов метаболизма в клетке, свертывание (денатурация) белков клетки и ее гибель. Гибель большинства вегетативных форм бактерий наступает при 60°С в среднем через 30 мин, при 70°С - через 10-15 мин, а при 80-100°С- через 1 мин. Споры бактерий гораздо устойчивее к высоким температурам, на-пример споры возбудителя столбняка выдерживают кипячение до 3 ч, а ботулизма - до 6 ч. Гибель спор при использовании влажного тепла (автоклав) наступает при 110-120°С через 20-30 мин, а сухого тепла (печь Пастера) при 180°С в течение 45 мин. Действие высоких температур положено в основу стерилизации - обеспложивания различных материалов и предметов.

К влиянию низких температур микроорганизмы чрезвычайно устойчивы.При температуре ниже 0°С они впадают в состояние анабиоза, при котором происходит торможение всех процессов жизнедеятельности клетки и прекращается ее размножение. Многие бактерии в жидком водороде при температуре - 253°С часами остаются живыми. Холерный вибрион и кишечная палочка могут долгое время сохраняться во льду. Возбудители дифтерии переносят замораживание в течение 3 мес, возбудители чумы - до 1 года. Особенно устойчивы к низким температурам вирусы и бактерии, образующие споры, менее устойчивы такие патогенные бактерии, как гонококки, менингококки, бледная спирохета, риккетсии. Губительно действуют на микробы повторное и быстрое замораживание и оттаивание, которые приводит к разрыву клеточных оболочек и выпадению содержимого клетки. Угнетающее действие низкой температуры на рост и размножение микроорганизмов используют при сохранении пищевых продуктов в погребах, холодильниках, в замороженном виде.


Высушивание, или дегидратация, у вегетативных форм бактерий в большинстве случаев вызывает гибель клетки, так как для нормальной жизнедеятельности ее необходима вода. При влажности субстрата, в котором размножаются микроорганизмы, ниже 30% развитие большинства из них прекращается. Сроки отмирания различных микробов под влиянием высушивания широко варьируют: холерный вибрион выдерживает высушивание до 2 сут, шигеллы - 7 дней, возбудители дифтерии- 30 дней, брюшного тифа - 70 дней, стафилококки и микобактерии туберкулеза - 90 дней, а молочнокислые бактерии и дрожжи - несколько лет. Очень устойчивы к высушиванию споры бактерий. Метод дегидратации после предварительного замораживания широко используют в целях консервирования стандартных культур микроорганизмов (бактерии, вирусы и т. д.), иммунных сывороток и вакцинных препаратов. Такие препараты могут храниться длительно. Сущность метода состоит в том, что культуры бактерий в ампулах быстро замораживают при температуре -78°С в сосудах с уплотненной углекислотой, а потом высушивают в безвоздушном пространстве (вакуумная, лиофильная сушка). Ампулы с культурой после этого запаивают.

Неблагоприятное действие высушивания на рост и размножение микроорганизмов используют при изготовлении, консервации сухих продуктов. Однако такие продукты, попав в условия высокой влажности, быстро портятся из-за восстановления активности микробов.

Действие облучений. На жизнедеятельность микроорганизмов может оказывать влияние как лучистая энергия, так и звуковое облучение.

Солнечный свет губительно влияет на все микроорганизмы, за исключением зеленых и пурпурных серобактерий. Прямые солнечные лучи убивают большинство микробов в течение нескольких часов. Патогенные бактерии более чувствительны к действию света, чем сапрофиты. Гигиеническое значение света как естественного обеззараживающего средства очень велико. Оно освобождает от болезнетворных бактерий воздух, внешнюю среду. Наиболее сильное бактерицидное (уничтожающее бактерий) действие оказывают лучи с короткой длиной волны-ультрафиолетовые. Их используют для стерилизации операционных, бактериологических лабораторий и других помещений, а также воды и молока. Источником этих лучей являются ртутно-кварцевые и бактерицидноувиолевые лампы. Другие виды лучистой энергии - рентгеновские, гамма-лучи - вызывают гибель микробов лишь при действии в больших дозах. Их используют для стерилизации бактериологических препаратов и некоторых пищевых продуктов. Вкусовые свойства пищи при этом не изменяются. В процессе действия лучистой энергии разрушается клеточная ДНК.

Звуковые облучения: обычные звуковьіе лучи практически лишены губительного действия на микроорганизмы в отличие от ультразвуковых. Ультразвуковые лучи вызывают значительное поражение клетки, при котором происходят разрыв ее наружной оболочки и освобождение цитоплазмы. Полагают, что газы, растворенные в жидкой среде цитоплазмы, под действием ультразвука активируются, возникает большое давление внутри клетки и она механически разрывается.

Действие давления (механическое, газовое, осмотическое).
Бактерии, особенно спороносные, очень устойчивы к механическому давлению. Давление 600 атм в течение 24 ч не влияет на возбудителя сибирской язвы, а при 20 000 атм в течение 45 мин он разрушается неполностью. Неспороносные бактерии более чувствительны к высокому давлению: холерный вибрион выдерживает давление 3000 атм, но у него частично снижаются подвижность и способность к размножению. Коринебактерии дифтерии, стрептококки, нейссерии, возбудители брюшного тифа устойчивы к давлению 5000 атм в течение 45 мин, но чувствительны к 6000 атм. Вирусы, бактериофаги инактивируются при давлении 5000-6000 атм, а бактериальные токсины (столбнячный и дифтерийный) ослабляются при давлении 12 000-15 000 атм. Механизм действия высокого механического давления - результат физико-химических изменений жидкости: уменьшения ее объема, повышения вязкости, скорости химических реакций.

Давление газов, растворенных в питательной среде, оказывает действие на микроорганизмы в зависимости от природы газа и типа обменного процесса в клетке. Водород при давлении 120 атм за 24 ч вызывает гибель 10- 40% клеток кишечной палочки, углекислота при давлении 50 атм убивает вегетативные формы за 90 мин, а азот и при 120 атм не оказывает выраженного действия на микробов.

Осмотическое давление имеет большое значение для жизнедеятельности микроорганизмов. По переносимости различных концентраций минеральных солей бактерии разделены на две большие группы: галофильные, которые могут развиваться в среде обитания с высоким содержанием солей, особенно хлорида натрия, и негалофильные, жизнедеятельность которых возможна при содержании хлорида натрия 0,5-2%. Оптимальным содержанием хлорида натрия для большинства патогенных микроорганизмов является среда с 0,5% этого вещества.

Губительное действие концентрированных растворов солей и сахара на микроорганизмы используют при консервировании ряда продуктов: рыбы, мяса, овощей, фруктов. Содержание 15-30% хлорида натрия в растворе обеспечивает гибель вегетативных форм и подавляет спорообразование. Чувствительность микроорганизмов к наличию хлорида натрия в среде различна: возбудители ботулизма прекращают жизнедеятельность в 6% растворе, дрожжи - в 14%, а некоторые галофилы могут размножаться в 20-30% растворах хлорида натрия.

Механическое встряхивание. Умеренная частота встряхиваний (1-60 в минуту) обеспечивает хорошую аэрацию питательной среды и создает благоприятные условия для роста аэробов. Резкие и быстрые встряхивания тормозят развитие, а при воздействии в течение длительного времени вызывают изменения клеточных белков и даже полное разрушение клеток. Сильное механическое встряхивание бактерий в контакте с инертными плотными частицами (стеклянные бусы, кварц) оказывает непосредственное вредное действие на клетки-бактерии разрушаются. Такой метод механической дезинтеграции используют для разрушения биомассы микробов при получении из них различных антигенов.

Лечебный факультет

Педиатрический факультет

КАФЕДРА МИКРОБИОЛОГИИ ТГМА

Занятие № 7

ДЕЙСТВИЕ ФИЗИЧЕСКИХ И ХИМИЧЕСКИХ ФАКТОРОВ НА МИКРООРГАНИЗМЫ

Цель занятия:

изучить действие на микробы физических и химических факторов; понятия «асептика» и «антисептика»; методы стерилизации и аппаратуру.

СТУДЕНТ ДОЛЖЕН ЗНАТЬ:

    Действие на микроорганизмы высоких и низких температур, давления. Понятие «стерилизация».

    Понятия «асептика» и «антисептика»

    Методы стерилизации, аппаратура.

    Действие на микроорганизмы факторов высушивания. Лиофильное высушивание.

    Действие света, ультразвука, лучистой энергии, ионизирующей радиации.

    Действие химических факторов на микробы. Дезинфицирующие и антисептические вещества.

СТУДЕНТ ДОЛЖЕН УМЕТЬ:

    готовить посуду к стерилизации в сухожаровом шкафу и автоклаве;

    оценить результаты контроля стерильности работы автоклава и сухожарового шкафа;

    оценить результаты определения чувствительности микробов к антимикробным веществам (дезинфектанты, антисептики).

СТУДЕНТ ДОЛЖЕН ИМЕТЬ ПРЕДСТАВЛЕНИЕ

об индексе токсичности при применении антисептиков; о режиме асептики при изготовлении лекарств; о химических консервантах крови, биопрепаратов, живых вакцин.

Методические указания

Работа № 1. Методы и режим стерилизации различных материалов

Цель: изучить методы стерилизации различных материалов.

Разработать и занести в тетрадь таблицу «Методы и режим стерилизации различных материалов».

Дано: таблица.

МЕТОДЫ И РЕЖИМ СТЕРИЛИЗАЦИИ РАЗЛИЧНЫХ МАТЕРИАЛОВ

Метод стерилизации

Аппаратура

Температура

Время (мин)

Материал

Кипячение

Прокаливание

Автоклавирование

Сухим жаром

Пастеризация

Тиндализация

Фильтрование

Лиофильная сушка

Лучистая энергия

Ионизирующая радиация

Работа № 2. Контроль эффективности стерилизации

Цель: оценить качество работы автоклава. Объяснить механизм стерилизации.

Результат:

Работа № 3. Определение чувствительности микроорганизмов к антисептикам

Цель: оценить чувствительность микробных клеток к антисептикам. Объяснить механизм действия антисептика в каждом конкретном случае. Зарисовать. Сделать вывод.

Дано: опыт № 2 (посев кишечной палочки с внесенными антисептиками - йод, метиленовый синий, карболовая кислота, хлорамин); таблица «Классификация антисептиков по механизму действия» (см. методические рекомендации).

Результат:

Теоретическая справка

Влияние физических факторов на микроорганизмы

Температура является наиболее значимым фактором, оказывающим влияние на жизнедеятельность микробов. Температура, необходимая для роста и размножения бактерий одного и того же вида варьирует в широких пределах. Различают температурный оптимум, минимум и максимум.

Температурный оптимум соответствует физиологической норме данного вида микробов, при которой размножение происходит быстро и интенсивно. Для большинствапатогенных и условно-патогенных микробов температурный оптимум соответствует37 0 С.

Температурный минимум соответствует температуре, при которой данный вид микробане проявляет жизнедеятельность .

Температурный максимум – температура, при которой рост и размножение прекращается,все процессы метаболизма снижаются и может наступить гибель.

В зависимости от температуры, оптимальной для жизнедеятельности, различают 3 группы микроорганизмов:

1) психрофильные , холодолюбивые, размножающиеся при температуре ниже 20 0 С (иерсинии, психрофильные варианты клебсиелл, псевдомонады, вызывающие заболевания человека. Размножаясь в пищевых продуктах, они более вирулентны при низких температурах);

2) термофильные , оптимум развития которых лежит в пределах 55 0 С (в организме теплокровных не размножаются и медицинского значения не имеют);

3) мезофильные , активно размножаются при температуре 20-40 0 С, оптимум температуры развития для них 37 0 С (патогенные для человека бактерии).

Микроорганизмы хорошо выдерживают низкие температуры. На этом основано длительное сохранение бактерий в замороженном состоянии. Однако ниже температурного минимума проявляется повреждающее действие низких температур, обусловленное разрывом клеточной мембраны кристаллами льда и приостановкой метаболических процессов.

Низкая температура приостанавливает гнилостные и бродильные процессы. Это лежит в основе консервации субстратов (в частности, пищевых продуктов) холодом.

Губительное действие высокой температуры (выше температурного максимума для каждой группы) используется при стерилизации. Стерилизация – обеспложивание – это процесс умерщвления на изделиях или в изделиях или удаление из объекта микроорганизмов всех видов, находящихся на всех стадиях развития, включая споры (термические и химические методы и средства). Для гибели вегетативных форм бактерий достаточно действия температуры 60 0 С в течение 20-30 мин; споры погибают при 170 0 С или при температуре 120 0 С пара под давлением (в автоклаве).

Асептика – комплекс мероприятий, направленных против возможности попадания микроорганизмов в рану, ткани, органы, полости тела больного при хирургических операциях, перевязках, инструментальных исследованиях, а также на предотвращение микробного и другого загрязнения при получении стерильной продукции на всех этапах технологического процесса.

Антисептика – комплекс лечебно-профилактических мероприятий, направленных на уничтожение микроорганизмов, способных вызвать инфекционный процесс на поврежденных или интактных участках кожи или слизистых оболочек.

Дезинфекция – обеззараживание объектов окружающей среды: уничтожение патогенных для человека и животных микроорганизмов с помощью химических веществ, обладающих антимиробным действием.

Рост и размножение микробов происходит при наличии воды, необходимой для пассивной и активного транспорта питательных веществ в цитоплазму клетки. Снижение влажности (высушивание) приводит к переходу клетки в стадию покоя, а затем к гибели. Наименее устойчивыми к высушиванию являются патогенные микроорганизмы – менингококки, гонококки, трепонемы, бактерии коклюша, ортомиксо-, парамиксо- и герпес-вирусы. Микобактерии туберкулеза, вирус натуральной оспы, сальмонеллы, актиномицеты, грибы устойчивы к высушиванию. Особой устойчивостью к высушиванию обладают споры бактерий. Устойчивость к высушиванию повышается, если микробы предварительно замораживают. Для сохранения жизнеспособности и стабильности свойств микроорганизмов в произ­водственных целях используется метод лиофильной сушки - высушивание из замороженного состояния под глубоким вакуумом.

В процессе лиофилизации производят: 1) предварительное замораживание материала при t -40 0 - -45 0 С в спиртовых ваннах в течение 30-40 мин; 2) осуществляют сушку из замороженного состояния в вакууме в сублимационных аппаратах в течение 24-28 часов.

Процесс высушивания имеет 2 фазы: сублимация льда при t ниже 0°С и де­сорбцию - удаление части свободной и связанной воды при t выше 0°С.

Лиофилизацию используют для получения сухих препаратов, когда не проис­ходит денатурации белков и не изменяется структура материала (антисыворотки, вакцины, сухая бактериальная масса). В лабораторных условиях лиофилизированные культуры микробов сохраняются в течение 10-20 лет, причем культура остает­ся чистой и не подвергается мутациям.

Прокаливание производят в пламени спиртовки или газовой горелки. Этим способом стерилизуют бактерирологические петли, препаровальные иглы, пинцеты и некоторые другие инструменты.

Кипячение применяют для стерилизации шприцев, мелкого хирургического инструментария, предметных, покровных стекол и т.д. Стерилизацию проводят в стерилизаторах, в которые наливают воду и доводят ее до кипения. Для устранения жесткости и повышения температуры кипения к воде добавляют 1-2% бикарбонат натрия. Инструменты обычно кипятят в течение 30 мин. Данный метод не обеспечивает полной стерилизации, так как споры бактерий при этом не погибают.

Пастеризация - стерилизация при 65-70°С в течение 1 часа для уничтожения бесспоровых микроорганизмов (молоко освобождается от бруцелл, микобактерий туберкулеза, шигелл, сальмонелл, стафилококков) Хранят на холоде

Тиндализация - дробная стерилизация материалов при 56-58 0 С в течение 1 часа 5-6 дней подряд. Применяется для стерилизации легко разрушающихся при высокой температуре веществ (сыворотка крови, витамины и др.).

Действие лучистой энергии на микроорганизмы. Солнечный свет, особенно его ультрафиолетовый и инфракрасный спектры, губительно действуют на вегета­тивные формы микробов в течение нескольких минут.

Инфракрасное излучение используется для стерилизации объектов, которая достигается за счет теплового воздействия температурой 300 0 С в течение 30 мин. Инфракрасные лучи оказывают воздействие на свободнорадикальные процессы, в результате чего нарушаются химические связи в молекулах микробной клетки.

Для дезинфекции воздуха помещений лечебно-профилактических учрежде­ний и аптек широко используются ртутно-кварцевые и ртутно-увиолевые лампы, являющиеся источником ультрафиолетовых лучей. При действии УФЛ с длиной волны 254 нм в дозе 1,5-5 мк Вт т/с на 1 см 2 при 30-ти минутной экспозиции погибают все вегетативные формы бактерий. Повреждающее действие УФ излуче­ния вызвано повреждением ДНК микробных клеток, приводящим к мутациям и гибели.

Ионизирующая радиация обладает мощным проникающим и повреждаю­щим действием на клеточный геном микробов. Для стерилизации инструментов одноразового использования (игл, шприцев) используют гамма-излучение, источ­ником которого являются радиоактивные изотопы 60 Со и 137 Сs в дозе 1,5-2 МN.рад. Этим методом стерилизуют также системы переливания крови и шовный матери­ал. Действие ультразвука в определенных частотах на микроорганизмы вызывает деполимеризацию органелл клетки, денатурацию входящих в их состав молекул в результате локального нагревания или повышения давления. Стерилизация объек­тов ультразвуком осуществляется на промышленных предприятиях, так как источ­ником УЗ являются мощные генераторы. Стерилизации подвергаются жидкие среды, в которых убиваются не только вегетативные формы, но и споры.

Стерилизация фильтрованием - освобождение от микробов материала, ко­торый не может быть подвергнут нагреванию (сыворотка крови, ряд лекарств). Используются фильтры с очень мелкими порами, не пропускающими микробы: из фарфора (фильтр Шамберлена), каолина, асбестовых пластинок (фильтр Зейтца). Фильтрование происходит под повышенным давлением, жидкость нагнетается через поры фильтра в приемник или создается разрежение воздуха в приемнике и жидкость всасывается в него через фильтр. К фильтрующему прибору присоединя­ется нагнетающий или разрежающий насос. Прибор стерилизуют в автоклаве.

error: