Астрономия наука о строении происхождении и развитии. Значение астрономии и ее связь с другими науками

В XX в. радикально изменилась древнейшая наука – астрономия. Это связано, как с появлением её новой теоретической основы – релятивистской и квантовой механики, так и с расширением возможностей экспериментальных исследований.

Общая теория относительности стала одной из основополагающих теорий космологии, а создание квантовой механики дало возможность изучать не только механическое движение космических тел, но и их физические и химические характеристики. Получили развитие звездная и внегалактическая астрономия. Астрономия стала всеволновой, т.е. астрономические наблюдения проводятся на всех диапазонах длин волн электромагнитного излучения (радио, инфракрасный, видимый, ультрафиолетовый, рентгеновский и гамма-излучение). Ее экспериментальные возможности существенно возросли с появлением космических аппаратов, позволяющих проводить наблюдения за пределами земной атмосферы, поглощающей излучение. Все это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных (а часто и необъяснимых) явлений.

Основной инструмент астрономических исследований - телескоп, другие приборы, например спектроскопические, исследуют излучение, собираемое телескопом. Сейчас лишь малая часть астрономических работ осуществляется визуально, в основном исследования проводятся с помощью фотокамер и других регистрирующих излучение приборов. Появились радиотелескопы, позволяющие изучать радиоизлучение всевозможных объектов Солнечной системы, нашей и других галактик. Радиоастрономия чрезвычайно расширила знания о Вселенной и привела к открытию пульсаров (нейтронных звезд), квазаров – внегалактических объектов, являющихся самыми мощными из известных источников излучения, позволила получить информацию о наиболее удаленных областях Вселенной, обнаружить изотропное «реликтовое» излучение. Все это – важнейшие открытия ХХ в. Дополнительную информацию дают и исследования в инфракрасном, ультрафиолетовом, рентгеновском и - диапазонах, но эти излучения сильно поглощаются атмосферой, и соответствующая аппаратура устанавливается на спутниках. К выдающимся открытиям ХХ в. относится и обнаруженное в 1929 г. американским астрономом Эдвином Хабблом (1889 – 1953) увеличение длины волны, соответствующей линиям в спектрах удаленных галактик («красное смещение»), которое свидетельствует о взаимном удалении космических объектов, т.е. о расширении Вселенной.



Структура Вселенной

Солнечная система. Солнечная система – космический дом человечества. Солнце - источник тепла и света, источник жизни на Земле. Солнечная система - взаимосвязанная совокупность звезды – Солнца и множества небесных тел, к которым относятся девять планет, десятки их спутников, сотни комет, тысячи астероидов и др. Все эти разнообразные тела объединены в одну устойчивую систему благодаря силе гравитационного притяжения центрального тела – Солнца.

Солнце – плазменный шар, состоящий в основном из водорода и гелия, находящийся в состоянии дифференцированного вращения вокруг своей оси. Наибольшая скорость вращения в экваториальной плоскости – один оборот за 25,4 суток. Источником солнечной энергии, скорее всего, являются термоядерные реакции превращения водорода в гелий, протекающие во внутренних областях солнца, где температура достигает 10 7 К. Температура поверхностных частей 6000 К. Поверхность Солнца не является гладкой, на ней наблюдаются гранулы, обусловленные конвективными газовыми потоками, возникают и исчезают «пятна», вихри. Взрывные процессы на Солнце, солнечные вспышки, периодически возникающие на его поверхности пятна, могут служить мерой активности Солнца. Исследования показали, что цикл максимальной активности Солнца регулярен и составляет приблизительно 11 лет. Пятна и вспышки на Солнце – наиболее заметные проявления магнитной активности Солнца. Связь между солнечной активностью и процессами на Земле отмечалась еще XIX веке, а в настоящее время имеется огромный статистический материал, подтверждающий влияние активности Солнца на земные процессы.

Разработанная в XVII – XVIII вв. теоретическая основа классической астрономии – классическая механика позволяет прекрасно описать движение связанных гравитационным взаимодействием тел Солнечной системы, но не дает ответа на вопрос о ее происхождении. Планеты солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, за исключением последней движутся вокруг Солнца в одном направлении в единой плоскости по эллиптическим орбитам. Планеты, как и их спутники, не являются самосветящимися телами и видны только потому, что освещены Солнцем. С 1962 г. планеты и их спутники исследуются не только с Земли, но и с космических станций. В настоящее время накоплен обширный фактический материал об особенностях физических и химических свойств поверхности планет, их атмосферы, магнитном поле, периодах вращения вокруг оси и Солнца. По физическим характеристикам планеты делятся на две группы: планеты-гиганты (Юпитер, Сатурн, Уран, Нептун) и планеты земной группы (Меркурий, Земля, Венера, Марс). Орбита наиболее удаленной от Солнца планеты – Плутона, размер которого меньше размера спутника Земли – Луны, определяет размер Солнечной системы 1,2·10 13 м.

Солнечная система, являясь частью нашей галактики, как целое движется вокруг ее оси со скоростью 250 м/с, делая полный оборот за 225 млн. лет. Согласно современным представлениям формирование современной структуры Солнечной системы началась с бесформенной газопылевой туманности (облака). Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце – звезда второго (или более позднего) поколения, т.к. кроме обычных для звезд водорода и гелия содержит и тяжелые элементы. Элементный состав Солнечной системы характерен для эволюции звезд. Под действием гравитационных сил облако сжималось так, что самая плотная его часть находилась в центре, где сосредоточена основная масса вещества первичной туманности. Там возникло Солнце, в недрах которого затем начались термоядерные реакции превращения водорода в гелий, являющиеся основным источником энергии солнца. По мере увеличения светимости Солнца газовое облако становилось все менее однородным, в нем появились сгущения – протопланеты . С ростом размеров и массы протопланет их гравитационное притяжение усиливалось, таким образом сформировались планеты. Остальные небесные тела образованы остатками вещества исходной туманности. Итак, примерно 4,5 - 5 млрд лет назад Солнечная система окончательно сформировалась в сохранившемся до нас виде. Вероятно, еще через 5 млрд лет Солнце истощит запасы водорода, и его структура начнет изменяться, что приведет к постепенному разрушению нашей Солнечной системы.

Хотя современные представления о происхождении Солнечной системы остаются на уровне гипотез, они согласуются с идеями закономерной структурной самоорганизации Вселенной в условиях сильнонеравновесного состояния.

Звезды. Галактики. Солнце – песчинка в мире звезд. Звезда – основная структурная единица мегамира. Стационарная звезда представляет собой высокотемпературный плазменный шар в состоянии динамического гидростатического равновесия. Она является тонко сбалансированной саморегулирующейся системой. В отличие от других небесных тел, например планет, звезды излучают энергию. Энергия, генерируемая в них ядерными процессами, приводит к возникновению в недрах звезд атомов химических элементов тяжелее водорода и является источником света. Звезды – природные термоядерные реакторы, в которых происходит химическая эволюция вещества. Они сильно различаются по своим физическим свойствам и химическому составу. Наблюдаются разные типы звезд, которые соответствуют разным этапам их эволюции. Эволюционный путь звезды определяется её массой, которая меняется в основном в пределах от 0,1 до 10 масс Солнца. Звезды рождаются, изменяются и гибнут. При массе, меньшей 1,4 солнечной, звезда, пройдя стадию красного гиганта , превращается сначала в белого карлика , затем – в черного карлика , холодную мертвую звезду, размер которой сравним с размером Земли, а масса – не более солнечной. Более массивные звезды на завершающем этапе эволюции испытывают гравитационный коллапс – неограниченное стягивание вещества к центру и могут вспыхнуть как сверхновые с выбросом значительной части вещества в окружающее пространство в виде газовых туманностей и превращением оставшейся части в сверхплотные нейтронную звезду или черную дыру .

Звезды образуют галактики - гигантские гравитационно связанные системы. Наша Галактика, в которую входит Солнце, называется Млечный путь и насчитывает 10 11 звезд. Галактики разнообразны по размерам и по форме. По внешнему виду выделяют три типа галактик – эллиптические, спиральные и неправильные. Наиболее распространенными являются спиральные, к ним относится и Наша Галактика. Она представляет собой уплощенный диск с диаметром ~ 10 5 световых лет с выпуклостью в центре, откуда исходят спиральные рукава. Галактика вращается, причем быстрота вращения зависит от расстояния до ее центра. Солнечная система находится на расстоянии приблизительно 30 000 световых лет от центра галактического диска.

С Земли невооруженным глазом можно наблюдать три галактики – Туманность Андромеды (из Северного полушария) и Большое и Малое Магеллановы облака (из Южного). Всего же астрономы обнаружили около ста миллионов галактик.

Помимо миллиардов звезд галактики содержат вещество в виде межзвездного газа (водород, гелий) и пыли. Плотные газово-пылевые облака скрывают от нас центр нашей Галактики, поэтому о его структуре можно судить только предположительно. Кроме того, в межзвездном пространстве существуют потоки нейтрино и электрически заряженных частиц, разогнанных до околосветовых скоростей, а также поля (гравитационные, электромагнитные). Следует отметить, что, хотя количество молекул органических соединений в межзвездном веществе невелико, их присутствие является принципиально важным. Например, теория абиогенного происхождения жизни на Земле опирается на участие в этом процессе молекул органических веществ, электромагнитного излучения и космических лучей. Чаще всего органические молекулы встречаются в местах максимальной концентрации газопылевого вещества.

В конце 70-х годов нашего века астрономы обнаружили, что галактики во Вселенной распределены не равномерно, а сосредоточены вблизи границ ячеек, внутри которых галактик почти нет. Таким образом, в небольших масштабах вещество распределено очень неравномерно, но в крупномасштабной структуре Вселенной не существует каких-либо особых мест или направлений, поэтому в больших масштабах Вселенную можно считать не только однородной, но и изотропной.

Метагалактика. Мы вкратце рассмотрели структурные уровни организации вещества в мегамире. Есть ли верхняя граница в возможности наблюдения Вселенной? Современная наука отвечает на этот вопрос утвердительно. Существует принципиальное ограничение размеров наблюдаемой части Вселенной, связанное не с экспериментальными возможностями, а с конечностью её возраста и скорости света.

Космология на основе общей теории относительности Эйнштейна и закона Хаббла(см. ниже) определяет возраст Вселенной Т вс 15-20 млрд лет (10 18 с). Никаких структурных единиц до этого не существовало. Введем понятие космологического горизонта, отделяющего те объекты от которых свет за время t<Т вс до нас дойти не может. Расстояние до него

где с – скорость света в вакууме, Т вс – возраст Вселенной.

Космологический горизонт образует границу принципиально наблюдаемой части Вселенной - Метагалактики . Если принять, что возраст Вселенной 10 18 с, то размер Метагалактики имеет порядок 10 26 м, причем космологический горизонт непрерывно удаляется от нас со скоростью 3·10 8 м/с.

Важное свойство Метагалактики в современном состоянии – её однородность и изотропность, т.е. свойства материи и пространства одинаковы во всех частях Метагалактики и по всем направлениям. Одно из важнейших свойств Метагалактики – её постоянное расширение, «разлет» галактик. Американский астроном Э. Хаббл установил закон, согласно которому чем дальше от нас находятся галактики, тем с большей скоростью они удаляются.

Расширяющаяся Вселенная – это Вселенная изменяющаяся. А значит, у неё есть своя история и эволюция. Эволюция Вселенной как целого изучается космологией , которая в настоящее время дает описание и первых мгновений её возникновения и возможных путей развития в будущем.

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно

связаны между собой, и такое разделение астрономии, в известном смысле, условно.

Главнейшими разделами астрономии являются:

1. Астрометрия - наука об измерении пространства и времени. Она состоит из: а)

сферической астрономии, разрабатывающей математические методы определения

видимых положений и движений небесных тел с помощью различных систем координат,

а также теорию закономерных изменений координат светил со временем; б)

фундаментальной астрометрии, задачами которой являются определение координат

небесных тел из наблюдений, составление каталогов звездных положений и

определение числовых значений важнейших астрономических постоянных, т.е.

величин, позволяющих учитывать закономерные изменения координат светил; в)

практической астрономии, в которой излагаются методы определения географических

координат, азимутов направлений, точного времени и описываются применяемые при

этом инструменты.

2. Теоретическая астрономия дает методы для определения орбит небесных тел по их

видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел

по известным элементам их орбит (обратная задача).

3. Небесная механика изучает законы движений небесных тел под действием сил

всемирного тяготения, определяет массы и форму небесных тел и устойчивость их

Эти три раздела в основном решают первую задачу астрономии, и их часто называют

классической астрономией.

4. Астрофизика изучает строение, физические свойства и химический состав

небесных объектов. Она делится на: а) практическую астрофизику, в которой

разрабатываются и применяются практические методы астрофизических исследований и

соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой

на основании законов физики даются объяснения наблюдаемым физическим явлениям.

Ряд разделов астрофизики выделяется по специфическим методам исследования. О них

будет сказано в; 101,

5. Звездная астрономия изучает закономерности пространственного распределения и

движения звезд, звездных систем и межзвездной материи с учетом их физических

особенностей.

В этих двух разделах в основном решаются вопросы второй задачи астрономии.

6. Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том

числе и нашей Земли.

7. Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела

астрономии решают ее третью задачу.

Курс общей астрономии содержит систематическое изложение сведений об основных

методах и главнейших результатах, полученных различными разделами астрономии.

Астрономия

Астрономия (образована от древнегреческих слов "астер, астрон" - «звезда», и "номос" - «обычай, установление, закон») - это наука, изучающая расположение, движение, строение, происхождение и развитие небесных тел. Иными словами, астрономия - наука о .

Ещё в глубокой древности люди обратили внимание на небосвод, следили за небесными телами, обратили внимание на взаимосвязь движения небесных светил и периодического изменения погоды. По расположению и люди определяли наступление новых времен года, а кочевые племена ориентировались по ним в своих путешествиях. В результате постоянного летоисчисления древние люди были вынуждены создать календарь. Есть доказательства, что еще доисторические люди знали об основных явлениях, связанных с восходом и заходом Солнца, Луны и некоторых звезд. Периодическая повторяемость затмений Солнца и Луны была известна уже очень давно. Среди древнейших письменных источников встречаются описания астрономических явлений, а также примитивные расчетные схемы для предсказания времени восхода и захода ярких небесных тел. Астрономия получила успешное развитие у таких цивилизаций как китайцев, греков, майя, вавилонян и индейцев. Особенное больших успехов достигла астрономия Древней Греции. Пифагор был первым, кто предположил, что Земля имеет шарообразную форму. Аристарх Самосский высказал предположение, что Земля вращается вокруг Солнца. Гиппарх во 2 в. до н. э. составил один из первых звездных каталогов. В произведении Птолемея «Альмагест», изложены теории о геоцентрической системе мира, которая была общепринятой на протяжении почти полутора тысяч лет.

В средневековье астрономия достигла своего развития в странах Востока. В 15 в. Улугбек построил вблизи Самарканда (город в современном Узбекистане) обсерваторию с точными в то время инструментами. Здесь был составлен первый после Гиппарха каталог звёзд. С 16 в. начинается развитие астрономии в Европе.

Рождение современной астрономии связывают с отказом от геоцентрической системы мира Птолемея и заменой ее гелиоцентрической системой Николая Коперника, созданной в 16 веке, а также с момента изобретения первого в мире Галелеевского телескопа. 18-19 века были для астрономии периодом накопления сведений и знаний о , нашу и физическую природу звезд, Солнца, планет и других космических тел. Появление крупных телескопов и осуществления систематических наблюдений привели к открытию, что Солнце входит в состав огромной дискообразной системы, состоящей из многих миллиардов звезд - галактики. В начале XX века астрономы обнаружили, что эта система является одной из миллионов подобных ей галактик. Открытие других галактик стало толчком для развития внегалактической астрономии.

В 20 веке астрономия разделилась на две основные ветви: наблюдательную астрономию и теоретическую. Наблюдательная астрономия - это получение наблюдательных данных о небесных телах, которые затем анализируются. Теоретическая астрономия ориентирована на разработку компьютерных, математических или аналитических моделей для описания астрономических объектов и явлений. сосредоточена на наблюдениях небесных тел, которые затем анализируют с помощью основных законов физики. Эти ветви взаимосвязаны друг с другом: теория предполагает, наблюдение доказывает. Научно-техническая революция 20 века имела чрезвычайно большое влияние на развитие астрономии в целом и особенно астрофизики. Создание оптических и радиотелескопов с высоким разрешением, применение ракет и искусственных спутников Земли для внеатмосферных астрономических наблюдений привели к открытию новых видов космических тел: радиогалактик, квазаров, пульсаров, источников рентгеновского излучения и т. д.. Были разработаны основы теории эволюции звезд и космогонии Солнечной системы. Достижением астрофизики 20 века стала релятивистская космология - теория эволюции Вселенной в целом.

Информация об объектах космоса получается в результате обнаружения и анализа видимого света, а также других спектров электромагнитного изучения в космосе. Соответственно, астрономические наблюдения можно разделить в соответствии с областями электромагнитного спектра, в которых проводятся измерения. Какие-то объекты мы можем наблюдать с Земли, но есть то, чего не видно из-за нашей атмосферы. Поэтому для того, чтобы заглянуть намного дальше, в космосе, на орбите нашей планеты, работают специальные космические телескопы.

И так, типы астрономических наблюдений следующие:

Оптическая астрономия.

Является исторически первой. Телескопы, способные принимать видимый свет, являются инструментами данного типа астрономии. Исследования изучаемых объектов основываются на изучении зарисовок этих объектов (в древнее время) или с помощью фотографий.

Инфракрасная астрономия.

Изучает объекты космоса, способные излучать инфракрасное излучение. Под инфракрасным излучением подразумевают электромагнитные волны с длиной волны от 0,74 до 2000 мкм. Несмотря на то, что длина волны инфракрасного излучения близка к длине волны видимого света, инфракрасное излучение сильно поглощается атмосферой, кроме того, атмосфера Земли имеет значительное инфракрасное излучение. Поэтому обсерватории для изучения инфракрасного излучения должны быть расположены на высоких и сухих местах или в космосе. Инфракрасный спектр полезен для изучения объектов, которые являются слишком холодными, чтобы излучать видимый свет таких объектов, как планеты и вокруг звездные диски. Инфракрасные лучи могут проходить через облака пыли, поглощающие видимый свет, что позволяет наблюдать молодые звезды в молекулярных облаках и ядер галактик. Некоторые молекулы мощно излучают в инфракрасном диапазоне, и это может быть использовано для изучения химических процессов в космосе.

Ультрафиолетовая астрономия.

Применяется для детального наблюдения в ультрафиолетовых длинах волн от 10 до 320 нанометров. Свет на этих длинах волн поглощается атмосферой Земли, поэтому исследование этого диапазона выполняют из верхних слоев атмосферы или из космоса. Ультрафиолетовая астрономия лучше подходит для изучения горячих звезд (ОФ звезды), поскольку основная часть излучения приходится именно на этот диапазон. Сюда относятся исследования голубых звезд в других галактиках и планетарных туманностей, остатков сверхновых, активных галактических ядер. Однако ультрафиолетовое излучение легко поглощается межзвездной пылью, поэтому во время измерения следует делать поправку на наличие пыли в космической среде.

Радиоастрономия.
Радиоастрономия - это исследование излучения с длиной волны, большей чем один миллиметр. Радиоастрономия отличается от большинства других видов астрономических наблюдений тем, что исследуемые радиоволны можно рассматривать именно как волны, а не как отдельные фотоны. Итак, можно измерить как амплитуду, так и фазу радиоволны, а это не так легко сделать на диапазонах коротких волн. Хотя некоторые радиоволны излучаются астрономическими объектами в виде теплового излучения, большинство радиоизлучения, наблюдаемого с Земли, является по происхождению синхротронным излучением, которое возникает, когда электроны движутся в магнитном поле. В радиодиапазоне может наблюдаться широкое разнообразие космических объектов, в частности сверхновые звезды, межзвездный газ, пульсары и активные ядра галактик.

Рентгеновская астрономия.

Рентгеновская астрономия изучает астрономические объекты в рентгеновском диапазоне. Обычно объекты излучают рентгеновское излучение благодаря:
1. синхротронному механизму;
2. тепловое излучение тонких слоев газа, нагретых выше 10 7 K (Кельвинов);
3. тепловое излучение массивных газовых тел, нагретых свыше 10 7 K.

Рентгеновские наблюдения основном выполняют из орбитальных станций, ракет или космических кораблей. К известным рентгеновских источников в космосе относятся: рентгеновские двойные звезды, пульсары, остатки сверхновых, эллиптические галактики, скопления галактик, а также активные ядра галактик.

Гамма-астрономия.

Астрономические гамма-лучи появляются в исследованиях астрономических объектов с короткой длиной волны электромагнитного спектра. Большинство источников гамма-излучения является фактически источниками гамма-всплесков, которые излучают только гамма-лучи в течение короткого промежутка времени от нескольких миллисекунд до тысячи секунд, прежде чем развеяться в пространстве космоса. Только 10% от источников гамма-излучения не является переходным источниками. Стационарные гамма-источники включают пульсары, нейтронные звезды и кандидаты на черные дыры в активных галактических ядрах.

Астрометрия. Небесная механика.

Один из старейших подразделов астрономии, занимается измерениями положение небесных объектов. Эта отрасль астрономии называется астрометрией. Исторически точные знания о расположении Солнца, Луны, планет и звезд играют чрезвычайно важную роль в навигации. Тщательные измерения расположения планет привели к глубокому пониманию гравитационных возмущений, что позволило с высокой точностью определять их расположение в прошлом и предусматривать на будущее. Эта отрасль известна как небесная механика. Сейчас отслеживания околоземных объектов позволяет прогнозирования сближения с ними, а также возможные столкновения различных объектов с Землей.

Также, существует такое понятие, как любительская астрономия.

Эта астрономия относится к такой, в которой вклад любителей может быть значительным. Вообще все астрономы-любители наблюдают различные небесные объекты и явления в большем объеме, чем ученые, хотя их технический ресурс намного меньше возможности государственных институтов, иногда оборудование они строят себе самостоятельно. Наконец большинство ученых вышли именно из этой среды. Главные объекты наблюдений астрономов-любителей: Луна, планеты, звезды, кометы, метеорные потоки и различные объекты глубокого неба, а именно: звездные скопления, галактики и туманности.

Одна из ветвей любительской астрономии, любительская астрофотография, предусматривает фотофиксацию участков ночного неба. Многие любители хотели бы специализироваться в наблюдении отдельных предметов, типов объектов, или типов событий, которые интересуют их. Большинство любителей работающих в видимом спектре, но небольшая часть экспериментирует с длиной волны за пределами видимого спектра. Это включает в себя использование инфракрасных фильтров на обычных телескопах, а также использование радиотелескопов. Пионером любительской радиоастрономии является Карл Янский, наблюдавший небо в радиодиапазоне 1930 года. Некоторые астрономов-любителей использует как домашние телескопы, так и радиотелескопы, которые изначально были построены для астрономических учреждений, но теперь доступны для любителей.


Астрономы-любители и в дальнейшем продолжают вносить свой ​​вклад в астрономию. Действительно, она является одной из немногих дисциплин, где вклад любителей может быть значительным. Довольно часто они проводят точечные измерения, которые используются для уточнения орбит малых планет, отчасти они также проявляют кометы, выполняют регулярные наблюдения переменных звезд. А достижения в области цифровых технологий позволило любителям добиться впечатляющего прогресса в области астрофотографии.

1. Что изучает астрономия. Связь астрономии с другими науками, ее значение

Астрономия * - наука, изучающая движение, строение, происхождение и развитие небесных тел и их систем. Накопленные ею знания применяются для практических нужд человечества.

* (Это слово происходит от двух греческих слов: астрон - светило, звезда иномос - закон. )

Астрономия является одной из древнейших наук, она возникла на основе практических потребностей человека и развивалась вместе с ними. Элементарные астрономические сведения были известны уже тысячи лет назад в Вавилоне, Египте, Китае и применялись народами этих стран для измерения времени и ориентировки по сторонам горизонта.

И в наше время астрономия используется для определения точного времени и географических координат (в навигации, авиации, космонавтике, геодезии, картографии). Астрономия помогает исследованию и освоению космического пространства, развитию космонавтики и изучению нашей планеты из космоса. Но этим далеко не исчерпываются решаемые ею задачи.

Наша Земля является частью Вселенной. Луна и Солнце вызывают на ней приливы и отливы. Солнечное излучение и его изменения влияют на процессы в земной атмосфере и на жизнедеятельность организмов. Механизмы влияния различных космических тел на Землю также изучает астрономия.

Курс астрономии завершает физико-математическое и естественнонаучное образование, получаемое вами в школе.

Современная астрономия тесно связана с математикой и физикой, с биологией и химией, с географией, геологией и космонавтикой. Используя достижения других наук, она в свою очередь обогащает их, стимулирует их развитие, выдвигая перед ними все новые задачи.

Изучая астрономию, необходимо обращать внимание на то, какие сведения являются достоверными фактами, а какие - научными предположениями, которые со временем могут измениться.

Астрономия изучает в космосе вещество в таких состояниях и масштабах, какие неосуществимы в лабораториях, и этим расширяет физическую картину мира, наши представления о материи. Все это важно для развития диалектико-материалистического представления о природе.

Предвычисляя наступление затмений Солнца и Луны, появление комет, показывая возможность естественнонаучного объяснения происхождения и эволюции Земли и других небесных тел, астрономия подтверждает, что предела человеческому познанию нет.

В прошлом веке один из философов-идеалистов, доказывая ограниченность человеческого познания, утверждал, что, хотя люди и сумели измерить расстояния до некоторых светил, они никогда не смогут определить химический состав звезд. Однако вскоре был открыт спектральный анализ, и астрономы не только установили химический состав атмосфер звезд, но и определили их температуру. Несостоятельным оказались и многие другие попытки указать границы человеческого познания. Так, ученые сначала теоретически оценили температуру лунной поверхности, затем измерили ее с Земли при помощи термоэлемента и радиометодов, потом эти данные были подтверждены приборами автоматических станций, созданных и посланных людьми на Луну.

2. Масштабы Вселенной

Вы уже знаете, что естественный спутник Земли - Луна является ближайшим к нам небесным телом, что наша планета вместе с другими большими и малыми планетами входит в состав Солнечной системы, что все планеты обращаются вокруг Солнца. В свою очередь Солнце, как и все звезды, видимые на небе, входит в состав нашей звездной системы - Галактики. Размеры Галактики так велики, что даже свет, распространяющийся со скоростью 300 000 км/с, проходит расстояние от одного ее края до другого за сто тысяч лет. Подобных галактик во Вселенной множество, но они очень далеки, и мы невооруженным глазом можем видеть лишь одну из них - туманность Андромеды.

Расстояния между отдельными галактиками обычно в десятки раз превосходят их размеры. Чтобы яснее представить себе масштабы Вселенной, внимательно изучите рисунок 1.

Звезды являются наиболее распространенным типом небесных тел во Вселенной, а галактики и их скопления - ее основными структурными единицами. Пространство между звездами в галактиках и между галактиками заполнено очень разреженной материей в виде газа, пыли, элементарных частиц, электромагнитного излучения, гравитационных и магнитных полей.

Изучая законы движения, строение, происхождение и развитие небесных тел и их систем, астрономия дает нам представление о строении и развитии Вселенной в целом.

Проникнуть в глубины Вселенной, изучить физическую природу небесных тел можно при помощи телескопов и других приборов, которыми располагает современная астрономия благодаря успехам, достигнутым в различных областях науки и техники.

Ч. 1
Глава 1

ПРЕДМЕТ МАТЕМАТИЧЕСКОЙ ОБРАБОТКИ НАБЛЮДЕНИЙ
1.1. Астрономические наблюдения

Как утверждают учебники, астрономия - наука о Вселенной, изучающая происхождение, строение и развитие небесных тел и их систем. В последние годы стали выделять особо космические исследования, понимая под этим исследование космического пространства, окружающего Землю и другие тела Солнечной Системы. Это связано с развитием технических средств научных исследований и, кроме всего, с созданием искусственных небесных тел - спутников, космических аппаратов, зондов, проникающих далеко в космическое пространство, сделанных руками человека.

Основной источник информации в астрономии - наблюдения. Нельзя путать астрономические наблюдения с созерцанием звездного неба! Очень часто профессиональный астроном-наблюдатель не знает где и какие созвездия располагаются на небе. Его может совершенно не интересовать, к какому созвездию относится наблюдаемая звезда или другой звездоподобный объект. Образы мифологических героев и животных на небе - для любителей астрономии.

Астроном-наблюдатель - это не мудрец, стоящий на балконе с длинной зрительной трубой (телескопом). Хотя М.В.Ломоносов именно в зрительную трубу открыл атмосферу Венеры, наблюдая за вспышкой ореола вокруг планеты. Такое явление как покрытие звезд спутниками и планетами наблюдали и в древности и сейчас. Правда, человеческий глаз заменен на светочувствительные электронные элементы, моменты времени покрытия измеряются сверхвысокоточными генераторами стандартной частоты. Астрономические наблюдения превратились в самый современный физический эксперимент. Однако астрономические наблюдения имеют и серьезные отличия от физического эксперимента. Прежде всего, это то, что наблюдатель (экспериментатор) не может изменить условия наблюдения, не может воздействовать на объекты наблюдения. Источником информации служит, как правило, электромагнитное излучение исследуемого объекта, изменить которое наблюдатель не в силах. Но он может заменить приемник этого излучения и получить новые характеристики исследуемого объекта. Современные астрономические наблюдения выполняются в очень широком диапазоне частот: от рентгеновских до радиоволн. В зависимости от диапазона наблюдаемых частот вводят различные “астрономии” - радиоастрономия, инфракрасная, оптическая, рентгеновская и т.п.

Итак, что же такое астрономическое наблюдение? На каком этапе нужно прибегать к математической обработке этого наблюдения? Какие задачи ставит перед собой математическая обработка? На эти вопросы и попытаемся ответить.

Предположим, что наблюдателю требуется определить момент прохождения заданной каталогом звезды через меридиан. Прежде, чем приступить к наблюдениям астроном должен установить телескоп так, чтобы звезда в нужный момент оказалась в поле зрения. Поэтому с помощью формул наблюдатель должен сначала предвычислить положение трубы телескопа и момент прохождения звезды. Эти данные готовят заранее. Теперь на этом примере проследим эволюцию техники наблюдения. Прежде всего, эти наблюдения производят на неподвижном инструменте (пассажный инструмент, универсал и т.п.), в поле зрения которого вследствие суточного вращения изображение звезды движется. Для определения момента прохождения через меридиан наблюдатель лет 50 назад брал с собой часы-хронометр, четко отбивающие секунды. За несколько секунд до прохождения звезды через вертикальную линию в поле зрения окуляра, отождествляемую с положением меридиана, наблюдатель “берет счет секунд” и внимательно следит за движением звезды. Например, звезда пересекла “меридиан” в промежутке, когда хронометр отбивал 19-ую и 20 секунды. Эти доли секунды определяют не отрываясь от окуляра, оценивая относительное расстояние от звезды до вертикальной линии в момент 19 с по всему пути прохождения звезды за всю секунду на глаз. Этот метод, известный в древней астрономии как метод Брадлея (Bradley), требовал от наблюдателя огромного напряжения. При этом ошибки наблюдений до 0,1-0,2с были неизбежны. Этот метод еще долго применялся у геодезистов для определения астрономических координат в полевых условиях и для определения астропунктов. Изобретение “безличного микрометра” значительно облегчило задачу наблюдений. Теперь наблюдатель должен лишь держать движущуюся звезду между двумя близкими вертикальными линиями - биссектором. А электрические контакты микрометра и хронометра позволили весь процесс движения звезды записать на бумажной ленте, которую можно измерить в спокойной обстановке, днем в лаборатории. Замена ленточного самописца хронографом полностью исключила необходимость измерения ленты. Однако и этот метод требует от наблюдателя искусства. Он должен очень точно, равномерно перемещать биссектор, причем так, чтобы звезда оставалась строго посередине между двумя вертикальными линиями. Изобретение разнообразной светочувствительной электроники позволило избавить наблюдателя и от этой операции. Теперь в поле зрения трубы поставили фотоэлементы. Переход изображения звезды с одного фотоэлемента на другой вызовет скачок электрического напряжения, момент которого можно определить с помощью специального генератора стандартной частоты. Остается только эти сигналы направить в соответствующие блоки, соединенные с компьютером, который с высокой точностью вычислит и момент прохождения звезды через меридиан. Роль наблюдателя в этом случае - в правильной, аккуратной эксплуатации всей аппаратуры, включая и астрономический инструмент.

Нужно сказать, что эволюция техники наблюдений этим не завершилась. Наблюдения моментов прохождения звезд через меридиан проводят, в частности, при астрометрическом исследовании движения планеты Земля (геодинамики) - базы для построения фундаментальной системы координат, необходимой при изучении Вселенной. Сейчас для этой цели используют методы, значительно отличающиеся от классических. Даже такой сугубо астрометрический инструмент как телескоп для некоторых астрономических задач уходит в историю. В частности, для изучения движения полюса и неравномерности вращения Земли применяют радиоинтерферометрию со сверхдлинной базой (РСДБ), лазерную локацию спутников и спутниковую систему “глобального позиционирования”. Все эти методы появились совсем недавно, когда космические исследования стали одной из важнейших наук о Земле и Вселенной.

При астрометрических и астрофизических наблюдениях широко применяется астрофотография. На фотопластинках с необходимыми светочувствительными характеристиками получают фотографии участков неба, планет и их спутников, спектры звезд и других небесных объектов. Сейчас появилась возможность (хотя и очень дорогая!) астрономические фотоаппараты - астрографы - размещать на космических аппаратах, где отсутствует атмосфера, затрудняющая астрономические наблюдения на Земле. Впечатляющие фотографии поверхности Марса, его спутников, колец Сатурна и даже Юпитера, о которых ранее ничего не было известно, получены с космических аппаратов. Изображение исследуемого объекта теперь получают не только на фотопластинках, но и на экранах персональных компьютеров, да еще в цвете (правда, искусственном). Фотопластинку в современной астрономии заменяют ПЗС-матрицы - своего рода фасеточные глаза, которыми природа снабдила насекомых. Это плотно упакованное на небольшой площадке множество микрофотоэлементов (пикселей), каждый из которых меняет электрический заряд при изменении его освещенности. Изображение объекта на ПЗС-матрице переводится на язык чисел и вводится в компьютер. Тот, в свою очередь, по желанию оператора высвечивает изображение на дисплее либо целиком, либо отдельными частями в разных масштабах. Именно таким образом исследовалась недавно (1986) комета Галлея, которая проходила близко от Солнца. Для того, чтобы на нее посмотреть, этими “электронными” глазами были снабжены космические аппараты, близко пролетающие около кометы.

Итак, какова же цель астрономического наблюдения? Отнюдь не только получить изображения космического тела, хотя это и интересно. Основной задачей астрономических наблюдений является получение наблюдательных данных (сведений) об исследуемом объекте: координаты на небесной сфере, на фотопластинке, распределение плотности почернения в изображении спектра и т.п. Все эти данные выражаются в числах, таблицах, графиках. Итогом наблюдений астероида являются две координаты на небесной сфере и момент наблюдения. Наблюдения звездных спектров могут быть записаны в виде кривых, полученных после автоматического “считывания” плотности фотографического изображения на фотопластинке с помощью микроденситометра. В любом случае итог наблюдений - данные, подлежащие математической обработке с целью определить необходимые параметры исследуемого объекта, выполнить интерпретацию данных, построить модель этого объекта.
1.2. Погрешности наблюдений

Число, график, которые получают в процессе наблюдений не абсолютно точны. Это связано с тем, что числовые данные мы получаем из измерений на пределе возможностей измерительных приборов. Так в примере наблюдения момента прохождения звезды через меридиан измерительным прибором является сам телескоп, а задачей наблюдателя является снимать отсчеты со шкалы времени, которую нам дает хронометр. В любых физических экспериментах часто приходится пользоваться измерительными шкалами. В том случае, когда отсчет приходится на промежуток между делениями шкалы производится оценка (интерполирование) на глаз с точностью до десятой доли этого деления. В астрономии это приходится делать, например, при пользовании угломерными инструментами.

Оценка на глаз не может быть произведена точно. Неизбежна погрешность отсчета. Замена глаза на светочувствительные элементы уменьшает, но не снимает полностью проблему погрешностей измерений. Сама звезда из-за несовершенства оптики - не точечное изображение. Кроме того, флуктуации плотности атмосферы вызывают “мерцание” звезды. Она не стоит на месте, а имеет хаотическое движение около своего “истинного” положения. Все это приводит к расплыванию изображения, а вместе с ним “расплыванию” отсчета.

Вместо термина “погрешность” часто применяют термин “ошибка”, особенно в старых математических работах. Сейчас оба эти термина имеют одинаковое право на употребление. Хотя ошибкой называют и понятие, не имеющее никакого отношения к математической обработке наблюдений. В английском языке error - математическая ошибка, mistake - ошибка, заблуждение. Например, по ошибке вы можете перепутать знак числа, по ошибке воспользоваться не той формулой и т.п. Такого рода ошибки относят к промахам.

Ошибки делят на систематические и случайные .

Основное свойство случайной ошибки - ее непредсказуемость. Кроме того, предполагают, что случайная ошибка может как преувеличить результат, так и преуменьшить его. Мысленно представим себе возможность повторения наблюдения неограниченное число раз, чего часто на практике сделать нельзя. Наблюдение конкретной звезды через меридиан может быть только одно. Его нельзя повторить, время ушло. Условия для наблюдения на следующую ночь, строго говоря, другие. Это не будет повторением первого наблюдения. В случае, когда числовые данные наблюдений получают в лабораторных условиях, например, измеряя координаты изображения звезды на фотопластинке, то процедуру измерения можно повторять сколько угодно раз, пока хватит терпения. При этом вы будете получать все время разный результат. Какой же из них верный?

Пусть наблюдаемый параметр есть
, а измерения дают
. Тогда ошибкой измерения будет

.

Ошибку
называют случайной, если помимо ее непредсказуемости она обладает следующими свойствами:

1) равенства нулю ее среднего значения
,

2) независимость одного измерения от другого. Критерием независимости служит равенство нулю среднего значения произведения всех разных ошибок. Пусть
и
- ошибки соответственно i-го и j-го наблюдений (
), причем j-i=m . Составим произведения
.Число таких произведений будет n-m, где n - общее число измерений. Очевидно, что равенство нулю среднего значения можно записать как
.

Для независимых измерений это равенство должно выполняться для любого смещения m 0 .

Первое из свойств интуитивно легко понять. Сумма
содержит как положительные, так и отрицательные слагаемые, которые как увеличивают сумму, так и уменьшают ее. В результате сумма с увеличением числа членов растет медленнее, чем само n. Отсюда, отношение суммы к числу измерений стремится к нулю.

Однако это будет не ноль, если, например, число положительных членов, как правило, больше, чем отрицательных. Среднее значение в этом случае не будет равно нулю, и ошибку, строго говоря, нельзя назвать случайной, хотя она по-прежнему непредсказуема.

Второе свойство понять сложнее, хотя для его обоснования можно снова воспользоваться тем же аргументом: сумма содержит члены с разными знаками, которые компенсируют друг друга. Варианты



+

+

+

+







+







+

Отсюда, знаменатель увеличивается быстрее числителя, и предел снова равен нулю.

Понятие независимости измерений можно распространить и на измерения двух параметров. Пусть подлежат определению X и Y, в результате измерений будем одновременно иметь пару и (i=1,2,..n). Ошибками измерений называют разности

,

.

Ошибки будут независимыми, если среднее значение суммы произведений
равно нулю:

Представим себе, что преувеличение величины X влечет за собой и преувеличение величины Y, и наоборот - уменьшение X влечет за собой уменьшение Y. Тогда произведения
будут иметь тенденцию сохранять знак и упомянутое выше равенство нулю не выполняется. В этом случае имеет место статистическая зависимость
и
друг от друга. Измерения нельзя считать независимыми.

Итак, ошибки измерения (наблюдения) называют случайными , если они помимо непредсказуемости (случайности) удовлетворяют требованию равенства нулю их среднего значения и условию независимости. Впрочем, последнее требование в некоторых случаях может и не выполняться. Эти случаи мы будем специально оговаривать.

Основное свойство систематических ошибок - невозможность уменьшения их влияния на результат путем многократных повторений. Вернемся снова к нашему примеру с наблюдением прохождения звезды через меридиан. Инструмент, на котором мы наблюдаем, должен быть установлен в меридиане. Предположим, что он слегка повернут к востоку. Тогда звезды в верхней кульминации будут достигать инструментального “меридиана” несколько раньше истинного. Причем, все звезды, которые мы наблюдаем! Ошибка всюду одного знака, хотя она будет зависеть от высоты звезды. Никакими многократными измерениями ее устранить нельзя. На практике вводят поправку за азимут инструмента, которая определяется специально, путем проведения дополнительных исследований.

Систематические ошибки возникают и в том случае, когда теория недостаточно строга, если она не учитывает каких-либо существенных факторов или работает с неадекватной моделью. Например, при определении расстояния до искусственного спутника Земли путем лазерной локации нужно знать скорость распространения света в атмосфере Земли. Для этого необходимо принять модель атмосферы за истину и по отношению к ней получить необходимые формулы для вычисления поправок. Если модель неверна, будут одинаковые погрешности во всех наблюдениях.

Такие разделы астрономии как астрометрия, гравиметрия, фотометрия и другие - это разделы науки, исследующие возможности устранения систематических погрешностей. Поэтому в каждом конкретном случае методика исключения систематической ошибки изучается в соответствующем разделе астрономии и выходит за рамки нашего курса.

Систематические ошибки могут быть и неустранимые. Примером тому можно взять построение звездного каталога. Для определения координат звезд относительным методом выбирают опорные звезды и измеряют приращение координат по прямому восхождению и склонению,
и
(см. рис.). Если координаты опорной звезды
, то зная
и
, получаем измеряемые координаты:

Таких звезд, координаты которых определяют относительно опорной звезды, может быть сколько угодно. Но их координаты будут содержать кроме погрешностей измерения
и
и погрешности, которые содержат координаты опорных звезд. Последние относятся к типу систематических. Они неизвестны и устранить их невозможно. В этом случае можно сказать, что координаты звезд определены в системе данной опорной звезды. Практически берут не одну, а много опорных звезд, относящихся к одному каталогу. Тогда говорят, что координаты определены в системе опорных звезд данного каталога.


1.3. Задачи математической обработки наблюдений

Как следует из вышеизложенного, математической обработке подвергают не наблюдения, а результаты этих наблюдений, заданные в виде чисел, таблиц или графиков. Формулы, по которым производится вычисление при подготовке к наблюдениям и после их выполнения выводятся в теории соответствующего раздела астрономии. Наш курс охватывает некоторые общие особенности вычислительного процесса, которые относятся к любой астрономической, да и физической задачам.

Одна из основных задач - составление алгоритмов вычисления, схем, вычислительных бланков и т.п., которые с вычислительной точки зрения грамотно организуют процесс вычислений. Прежде всего необходимо правильно использовать технику приближенных вычислений.

Приведем простой пример. Предположим, вам надо вычислить разность
без компьютера, а правила извлечения квадратного корня вы забыли! Очень быстро к результату приведет следующая “маленькая хитрость”:

С калькулятором пришлось бы пользоваться многозначными числами:

Второй пример. Нужно вычислить на калькуляторе разность
при
. Если использовать эту формулу “в лоб”, получим ,
. Если эту формулу преобразовать: , получим результат много точнее.

Третий пример. Дано число 2.378.... Остальные числа после запятой вам неизвестны. Предположим, что вам это число нужно разделить на 17. Берем калькулятор и вычисляем:

2,378:17=0.13988235

Сначала выпишем все цифры, которые высвечиваются на табло калькулятора. Но, как я говорил, цифры после...8 нам неизвестны. А может, должно быть 2.3789?! В этом случае частное от деления на 17 будет равно 0.13993529 . Видно, в зависимости от того, какая цифра следует за...8, будут меняться 5 последних цифр результата. Поэтому их следует считать неизвестными, хотя они и высвечиваются на табло. Использовать полученный результат в дальнейших вычислениях - бездарная перегрузка как машины, так и собственного времени. Подобного рода примеров можно привести множество.

Итак, первой задачей математической обработки является организация вычислений .

Как мы уже говорили, исходные данные содержат погрешности. Возникает сразу же вопрос - как велики они? Сказать, что погрешность равна какому-то определенному числу, нельзя, мы ее не знаем. Однако нам необходимо знать с какой же точностью получены эти данные. Например, можем ли мы измерить видимый диаметр Луны с точностью до 1 угловой минуты, 1 угловой секунды или, может быть, с точностью до долей секунды. Повторяя измерения многократно, мы можем составить себе представление о точности. Полный ответ на этот вопрос дают характеристики погрешности, определение которых входит в сферу интересов нашего предмета.

Следовательно, второй задачей математической обработки астрономических наблюдений будет определение характеристик точности наблюдения, измерения или, как чаще говорят, оценки точности наблюдения.

В астрономических исследованиях часто приходится прибегать к построению эмпирических формул. Пусть какой-либо параметр, зависящий от времени, есть y, тогда в результате повторения наблюдений в моменты будем иметь разные значения . Можно построить график зависимости y от t, но наблюденные точки (
) из-за ошибок наблюдения не выстраиваются “в цепочку”. Через них нельзя провести плавную кривую. Тогда поступают следующим образом. Проводят плавную кривую без изломов так, чтобы наблюденные точки лежали по обе стороны кривой, притом сколько выше кривой, столько и ниже. Как правило, интуиция подсказывает нам, как провести эту кривую, и это будет эмпирическая кривая . Однако ее нельзя использовать для дальнейших математических выкладок. Нужна эмпирическая формула . Это, обычно, сумма синусоид с разными амплитудами, периодами и фазами. Это может быть экспоненциальная или логарифмическая кривые. Часто пользуются степенными полиномами. Нужно только так определить параметры этой функции, чтобы она наилучшим образом аппроксимировала, т.е. изображала изменение наблюденного параметра от времени.

Сказанное выше можно перевести на язык формул. Пусть аппроксимирующая наблюдения функция содержит m неизвестных параметров, а аналитический вид самой функции мы выбрали заранее. Обозначив искомые параметры через
, а функцию через
,будем иметь

где - “невязки” (остаточные разности, residuals).

Невязки показывают, насколько наблюденные значения (О) отличаются от вычисленных (С). Иначе говоря, наши “невязки” есть ничто иное как О-С - так традиционно обозначают в астрономии эти разности (Observatio-Calculatio).

Приведенную формулу можно считать системой n уравнений с m неизвестными. При
система переопределена (число уравнений больше числа неизвестных). Можно, конечно, отобрать из наблюдений ровно столько, сколько нужно, а остальные отбросить. Тогда получим одно решение. Если отобрать другие наблюдения, получим другое решение. Так можно поступать неоднократно (точнее, n-m раз), получая все новые и новые решения. Какие же параметры следует считать наилучшими? Ответ на этот вопрос дает математическая обработка наблюдений.

Итак, третьей задачей нашего предмета является определение точечных оценок параметров - так называется эта процедура. Точечными оценками называются конкретные приближенные значения параметров, совокупность которых дает точку в m-мерном пространстве.

Невязки могут быть пренебрежимо малыми или, наоборот, очень большими. Понятно, что степень доверия к определению параметров будет разная. Поэтому важной характеристикой оценки параметров является ее надежность - вполне математическая характеристика оценивания. Строго говоря, мы можем указать лишь интервал значений параметров. Чем больше этот интервал, тем выше надежность утверждения, что искомое значение параметра (или параметров) лежит внутри этого интервала; чем меньше интервал, тем меньше и надежность. Задача определения интервала при заданной надежности называется интервальной оценкой параметров , которую мы отнесем к четвертой задаче математической обработки наблюдений.

Наш курс следовало бы назвать введением в математическую обработку. Более глубокое изучение предмета опирается на соответствующие разделы математики, в частности, численные методы, теорию вероятностей и математическую статистику. Все эти предметы вы будете изучать на разных курсах университета. Однако совершенствоваться по теории и практике этого предмета придется всю жизнь вместе с развитием вычислительных средств и практических алгоритмов обработки наблюдений. А пока можно рекомендовать следующую литературу:

1)Демидович Б.П., Марон И.А. “Основы вычислительной математики”, 1970г.

2)Тейлор Дж. “Введение в теорию ошибок”, 1985 г.

3)Щиголев Б.М. “Математическая обработка наблюдений”, 1969 г.



ч. 1
error: