Основной закон симметрии кристаллов. Симметрия структуры кристаллов Экспериментальная работа «Выращивание кристаллов»

Все разнообразие кристаллов сводится к следующим семи основным кристаллографическим системам, или сингониям.

Сингония - сходноугольность (сходство углов).

Первая система: - Кубическая

Узлы кристаллической решетки создают куб, у которого параметры решетки одинаковы a=b=c , а углы a=b=g=90⁰

Рисунок 14. Кубическая ячейка.

В этой решетке кристаллизуются все кристаллы n-ых проводников (Si, Ge, GaAs, Cu), щелочно-галлоидные кристаллы (LiF, NaCl, KCl).

Кристаллы с кубической решеткой относятся к высшей категории симметрии. В этих кристаллах анизотропия свойств в различных направлениях выражена слабо. Многие физические свойства в этих кристаллах изотропны: теплопроводимость, электропроводимость,

показатель преломления одинаковых во всех направлениях.

Внешняя форма этих кристаллов, как правило, изометрична, т.е. развита примерно одинакова по всем направлениям. Кристаллы имеют форму куба (6-граней), октаэдра (8-граней). В этих кристаллах анизотропия таких свойств, как упругость и электрооптический эффект развиты гораздо слабее, чем у кристаллов других категорий.

Кристаллографические категории, сингонии и системы координат.

Плоскости симметрии, оси симметрии и центры симметрии образуются в кристаллах в разных сочетаниях. Например: у кристаллов с кубической решеткой (у полупроводников и щелочно-галлоидных кристаллов) один и тот же набор элементов симметрии: плоскостей симметрии m (P) - 9, 3 оси четвертого порядка 4(L 4), 4 оси третьего порядка 3(L 3), 6 осей второго порядка 2(L 2) и один центр симметрии (С), единичных направлений нет.

Категории симметрии : их три высшая, средняя и низшая. Это деление на категории происходит по симметрии и числу единичных направлений кристалла. Симметрия куба или октаэдра характерна для кристаллов высшей категории. (См. Кубическую решетку)

Тетрагональная – главная ось симметрии 4 или ; a=b≠c, a=b=g=90°

Форма элементарной ячейки-призма с квадратным основанием.

Рисунок 15. Тетрагональная ячейка.

К тетрагональной системе относятся кристаллы KDP и ADP (искусственные)

(дигидрофосфат калия и дигидрофосфат амония), селаита MgF 2 .

Тригональная – главная ось симметрии 3 или ; a=b≠c , a=b=90°, g=120°

Рисунок 16. Тригональная ячейка.

Форма элементарной ячейки-призма с ромбическим основании с углом 120°

К тригональной системе относятся кристаллы кальцитаCaCO 3 (природные и искусственные), кварца (a-SiO 2), ниобата и танталата лития(LiNbO 3 и LiTaO 3).

Гексагональная - главная ось симметрии 6 или

a=b≠c , a=b=90°, g=120°

Рисунок 17. гексагональная ячейка.

Форма элементарной ячейки – призма с ромбическим основанием с углами 120°. Три такие призмы составляют шестигранную призму, уже не примитивную, гексагональную ячейку. К гексагональной системе относятся кристаллы кварца (b-кварц).

Ромбическая – три оси 2 и три плоскости m симметрии a≠b≠c, a=b=g=90°

Рисунок 18. Ромбическая ячейка.

К ромбической системе относится кристаллическая сера.

Моноклинная – ось 2 или плоскость m симметрии, a≠b≠c, a=b=g=90°

А. И. Сёмке ,
, МОУ СОШ № 11, Ейское УО, г. Ейск, Краснодарский кр.

Симметрия кристаллов

Цели урока: Образовательная – знакомство с симметрией кристаллов; закрепление знаний и умений по теме «Свойства кристаллов» Воспитательная – воспитание мировоззренческих понятий (причинно-следственные связи в окружающем мире, познаваемость окружающего мира и человечества); нравственное воспитание (воспитание любви к природе, чувства товарищеской взаимовыручки, этики групповой работы) Развивающая – развитие самостоятельности мышления, грамотной устной речи, навыков исследовательской, экспериментальной, поисковой и практической работы.

Симметрия… является той идеей, посредством
которой человек на протяжении веков пытался
постичь порядок, красоту и совершенство.
Герман Вейль

Физический словарик

  • Кристалл – от греч. κρύσταλλος – буквально лёд, горный хрусталь.
  • Симметрия кристаллов – закономерность атомного строения, внешней формы и физических свойств кристаллов, заключающаяся в том, что кристалл может быть совмещён с самим собой путём поворотов, отражений, параллельных переносов (трансляций) и других преобразований симметрии, а также комбинаций этих преобразований.

Вводный этап

Симметрия кристаллов – наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом . Согласно определению симметрии, данному Е.С. Фёдоровым, «симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением». Таким образом, симметричным является такой объект, который может быть совмещён сам с собой определёнными преобразованиями: поворотами вокруг осей симметрии или отражениями в плоскостях симметрии. Такие преобразования принято называть симметрическими операциями . После преобразования симметрии части объекта, находившиеся в одном месте, совпадают с частями, находящимися в другом месте, что означает, что в симметричном объекте есть равные части (совместимые и зеркальные). Внутренняя атомная структура кристаллов – трёхмерно-периодическая, т. е. она описывается как кристаллическая решётка. Симметрия внешней формы (огранки) кристалла определяется симметрией его внутреннего атомного строения, которая обусловливает также и симметрию физических свойств кристалла.

Исследовательская работа 1. Описание кристаллов

Кристаллическая решётка может обладать различными видами симметрии. Под симметрией кристаллической решётки понимаются свойства решётки совпадать с самой собой при некоторых пространственных перемещениях. Если решётка совпадает сама с собой при повороте некоторой оси на угол 2π/n , то эта ось называется осью симметрии n -го порядка.

Кроме тривиальной оси 1-го порядка, возможны только оси 2-го, 3-го, 4-го и 6-го порядков.

Для описания кристаллов используют различные группы симметрии, из которых важнейшими являются пространственные группы симметрии, описывающие структуру кристаллов на атомарном уровне, и точечные группы симметрии, описывающие их внешнюю форму. Последние называются также кристаллографическими классами . В обозначения точечных групп входят символы основных присущих им элементов симметрии. Эти группы объединяются по симметрии формы элементарной ячейки кристалла в семь кристаллографических сингоний – триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую. Принадлежность кристалла к той или иной группе симметрии и сингонии определяется измерениями углов или методом рентгеноструктурного анализа.

В порядке возрастающей симметрии кристаллографические системы располагаются следующим образом (обозначения осей и углов понятны из рисунка):

Триклинная система. Характерное свойство: a ≠ b ≠ c; α ≠ β ≠ γ. Элементарная ячейка имеет форму косоугольного параллелепипеда.

Моноклинная система. Характерное свойство: два угла прямые, третий отличен от прямого. Следовательно, a ≠ b ≠ c ; β = γ = 90°, α ≠ 90°. Элементарная ячейка имеет форму параллелепипеда с прямоугольником в основании.

Ромбическая система. Все углы прямые, все рёбра разные: a ≠ b ≠ c ; α = β = γ = 90°. Элементарная ячейка имеет форму прямоугольного параллелепипеда.

Тетрагональная система. Все углы прямые, два ребра одинаковые: a = b ≠ c ; α = β = γ = 90°. Элементарная ячейка имеет форму прямой призмы с квадратным основанием.

Ромбоэдрическая (тригональная) система. Все рёбра одинаковые, все углы одинаковые и отличны от прямого: a = b = c ; α = β = γ ≠ 90°. Элементарная ячейка имеет форму куба, деформированного сжатием или растяжением вдоль диагонали.

Гексагональная система. Рёбра и углы между ними удовлетворяют условиям: a = b ≠ c ; α = β = 90°; γ = 120°. Если составить вместе три элементарные ячейки, то получается правильная шестигранная призма. гексагональную упаковку имеют более 30 элементов (С в аллотропной модификации графита, Be, Cd, Ti и др.).

Кубическая система. Все рёбра одинаковые, все углы прямые: a = b = c ; α = β = γ = 90°. Элементарная ячейка имеет форму куба. В кубической системе различают три вида так называемых решёток Бравэ : примитивную (а ), объёмно-центрированную (б ) и гранецентрированную (в ).

Примером кубической системы являются кристаллы поваренной соли (NaCl, г ). Более крупные ионы хлора (светлые шарики) образуют плотную кубическую упаковку, в свободных узлах которой (в вершинах правильного октаэдра) расположены ионы натрия (чёрные шарики).

Ещё один пример кубической системы – решётка алмаза (д ). Она представляет собой две кубические гранецентрированные решётки Бравэ, сдвинутые на четверть длины пространственной диагонали куба. Такой решёткой обладают, например, химические элементы кремний, германий, а также аллотропная модификация олова – серое олово.


Экспериментальная работа «Наблюдение кристаллических тел»

Оборудование: лупа или короткофокусная линза в оправе, набор кристаллических тел.

Порядок выполнения

  1. С помощью лупы рассмотрите кристаллики поваренной соли. Обратите внимание на то, что все они имеют форму кубиков. Одиночный кристалл называют монокристаллом (имеет макроскопически упорядоченную кристаллическую решётку). Основным свойством кристаллических тел является зависимость физических свойств кристалла от направления – анизотропия.
  2. Рассмотрите кристаллики медного купороса, обратите внимание на наличие плоских граней у отдельных кристалликов, углы между гранями не равны 90°.
  3. Рассмотрите кристаллики слюды в виде тонких пластинок. Торец одной из пластин слюды расщеплён на множество тонких листочков. Пластинку слюды трудно разорвать, но легко расщепить на более тонкие листочки по плоскостям (анизотропия прочности ).
  4. Рассмотрите поликристаллические тела (излом куска железа, чугуна или цинка). Обратите внимание: на изломе можно различить мелкие кристаллики, из которых и состоит кусок металла. Большинство встречающихся в природе и получаемых в технике твёрдых тел представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристалликов. В отличие от монокристаллов поликристаллы изотропны, т. е. их свойства одинаковы по всем направлениям.

Исследовательская работа 2. Симметрия кристаллов (кристаллические решётки)

Кристаллы могут иметь форму различных призм, основанием которых служат правильный треугольник, квадрат, параллелограмм и шестиугольник. В основе классификации кристаллов и объяснения их физических свойств может лежать не только форма элементарной ячейки, но и другие виды симметрии, например, поворот вокруг оси. Осью симметрии называют прямую, при повороте вокруг которой на 360° кристалл (его решётка) несколько раз совмещается сам с собой. Число этих совмещений называют порядком оси симметрии . Существуют кристаллические решётки, обладающие осями симметрии 2-го, 3-го, 4-го и 6-го порядка. Возможна симметрия кристаллической решётки относительно плоскости симметрии, а также комбинации разных видов симметрии.

Русский учёный Е.С. Фёдоров установил, что 230 различных пространственных групп охватывают все возможные кристаллические структуры, встречающиеся в природе. Евграф Степанович Фёдоров (22 декабря 1853 г. – 21 мая 1919 г.) – русский кристаллограф, минералог, математик. Крупнейшее достижение Е.С. Фёдорова – строгий вывод всех возможных пространственных групп в 1890 г. Тем самым Фёдоров описал симметрии всего разнообразия кристаллических структур. В то же время он фактически решил известную с древности задачу о возможных симметричных фигурах. Кроме того, Евграф Степанович создал универсальный прибор для кристаллографических измерений – столик Фёдорова .

Экспериментальная работа «Демонстрация кристаллических решёток»

Оборудование: модели кристаллических решёток хлористого натрия, графита, алмаза.

Порядок выполнения

  1. Соберите модель кристалла хлористого натрия (приводится рисунок ). Обращаем внимание на то, что шарики одного цвета имитируют ионы натрия, а другого – ионы хлора. Каждый ион в кристалле совершает тепловое колебательное движение около узла кристаллической решётки. Если соединить эти узлы прямыми линиями, то образуется кристаллическая решётка. Каждый ион натрия окружён шестью ионами хлора, и наоборот, каждый ион хлора – шестью ионами натрия.
  2. Выберите направление вдоль одного из рёбер решётки. Обратите внимание: белые и чёрные шарики – ионы натрия и хлора – чередуются.
  3. Выберите направление вдоль второго ребра: белые и чёрные шарики – ионы натрия и хлора – чередуются.
  4. Выберите направление вдоль третьего ребра: белые и чёрные шарики – ионы натрия и хлора – чередуются.
  5. Проведите мысленно прямую линию по диагонали куба, – на ней окажутся только белые или только чёрные шарики, т. е. ионы одного элемента. Это наблюдение может служить основанием для объяснения явления анизотропии, свойственном кристаллическим телам.
  6. Размеры ионов в решётке неодинаковы: радиус иона натрия приблизительно в 2 раза больше радиуса иона хлора. В результате этого в кристалле поваренной соли ионы расположены так, что положение решётки устойчивое, т. е. имеется минимум потенциальной энергии.
  7. Соберите модель кристаллической решётки алмаза и графита. Различие в упаковке атомов углерода в решётках графита и алмаза определяет существенные различия их физических свойств. Такие вещества называют аллотропными.
  8. Сделайте вывод по результатам наблюдения и зарисуйте схематично виды кристаллов.

1. Альмандин. 2. Исландский шпат. 3. Апатит. 4. Лёд. 5. Поваренная соль. 6. Ставролит (двойник). 7. Кальцит (двойник). 8. Золото.

Исследовательская работа 3. Получение кристаллов

Кристаллы ряда элементов и многих химических веществ обладают замечательными механическими, электрическими, магнитными, оптическими свойствами. Развитие науки и техники привело к тому, что многие редко встречающиеся в природе кристаллы стали очень нужны для изготовления деталей приборов, машин, для выполнения научных исследований. Возникла задача разработки технологии изготовления монокристаллов многих элементов и химических соединений. Как известно, алмаз – это кристалл углерода, рубин и сапфир – кристаллы оксида алюминия с различными примесями.

Наиболее распространёнными способами выращивания монокристаллов является кристаллизация из расплава и кристаллизация из раствора. Кристаллы из раствора выращивают при медленном испарении растворителя из насыщенного раствора или при медленном понижении температуры раствора.

Экспериментальная работа «Выращивание кристаллов»

Оборудование: насыщенные растворы поваренной соли, двухромокислого аммония, гидрохинона, хлористый аммоний, предметное стекло, стеклянная палочка, лупа или линза в оправе.

Порядок выполнения

  1. Возьмите стеклянной палочкой небольшую каплю насыщенного раствора поваренной соли и перенесите на предметное предварительно нагретое стекло (растворы готовятся заранее и хранятся в небольших колбочках или пробирках, закрытых пробками ).
  2. Вода с тёплого стекла сравнительно быстро испаряется, и из раствора начинают выпадать кристаллы. Возьмите лупу и наблюдайте за процессом кристаллизации.
  3. Наиболее эффективно проходит опыт с двухромокислым аммонием. На краях, а затем по всей поверхности капли появляются золотисто-оранжевые ветви с тонкими иглами, образующие причудливый рисунок.
  4. Хорошо можно видеть неодинаковые скорости роста кристаллов в различных направлениях – анизотропию роста – у гидрохинона.
  5. Сделайте вывод по результатам наблюдения и зарисуйте схематично виды полученных кристаллов.

Исследовательская работа 4. Применение кристаллов

Кристаллы обладают замечательным свойством анизотропии (механическими, электрическими, оптическими и т. д.). Современные производства невозможно представить без использования кристаллов.

Кристалл

Пример применения

Разведка и добыча полезных ископаемых

Буровые инструменты

Ювелирная промышленность

Украшения

Контрольно-измерительные приборы

Морские хронометры – особо точные
приборы

Обрабатывающая промышленность

Алмазные подшипники

Приборостроение

Опорные камни для часов

Химическая промышленность

Фильеры для протяжки волокна

Научные исследования

Рубиновый лазер

Ювелирная промышленность

Украшения

Германий, кремний

Электронная промышленность

Полупроводниковые схемы и устройства

Флюорит, турмалин, исландский шпат

Опто-электронная промышленность

Оптические приборы

Кварц, слюда

Электронная промышленность

Электронные приборы (конденсаторы и т. д.)

Сапфир, аметист

Ювелирная промышленность

Украшения

Обрабатывающая промышленность

Графитовая смазка

Машиностроение

Графитовая смазка

Интересная информация

Кто и когда открыл жидкие кристаллы? Где используются ЖК?

В конце XIX в. германский физик О. Леман и австрийский ботаник Ф. Рейнитцер обратили внимание на то, что некоторые аморфные и жидкие вещества отличаются весьма упорядоченной параллельной укладкой удлинённых по форме молекул . Позже по степени структурной упорядоченности их назвали жидкими кристаллами (ЖК). Различают смектические кристаллы (с послойной укладкой молекул), нематические (с хаотически параллельно смещёнными удлинёнными молекулами) и холестерические (по структуре близкие к нематическим, но отличающиеся большей подвижностью молекул). Было замечено, что при внешнем воздействии, например, малого по величине электрического напряжения, при изменении температуры, напряжённости магнитного поля меняется оптическая прозрачность молекулы ЖК. Выяснилось, что происходит это за счёт переориентации осей молекул в направлении, перпендикулярном исходному состоянию.

Жидкие кристаллы: а ) смектические; б ) нематические; в ) холестерические.
URL: http://www.superscreen.ru

Принцип работы ЖК-индикатора:
слева – электрическое поле выключено, свет проходит через стёкла; справа – поле включено, свет не проходит, видны чёрные символы (URL тот же)

Очередная волна научного интереса к жидким кристаллам поднялась в послевоенные годы. В числе исследователей-кристаллографов веское слово сказал наш соотечественник И.Г. Чистяков. В конце 60-х гг. прошлого века американская корпорация RСA начала проводить первые серьёзные исследования по использованию нематических ЖК для визуального отображения информации. Однако опередила всех японская компания Sharp , которая в 1973 г. предложила жидкокристаллическую буквенно-цифровую мозаичную панель – ЖК-дисплей (LCD – Liquid Crystal Display ). Это были скромные по размерам монохромные индикаторы, где полисегментные электроды использовались в основном для нумерации чисел. Начавшаяся «индикаторная революция» привела практически к полной замене стрелочных механизмов (в электроизмерительных приборах, наручных и стационарных часах, бытовой и промышленной радиоаппаратуре) на средства визуального отображения информации в цифре – более точные, с безошибочным отсчётом.

Жидкокристаллические дисплеи разного типа. URL: http://www.permvelikaya.ru ; http://www.gio.gov.tw ; http://www.radiokot.ru

Благодаря успехам микроэлектроники карманные и настольные калькуляторы заменили арифмометры, счёты, логарифмические линейки. Лавинообразное снижение себестоимости интегральных микросхем привело даже к явлениям, явно противоречащим техническим тенденциям. Например, современные цифровые наручные часы заметно дешевле пружинно-стрелочных, которые, по инерции мышления, сохраняют популярность, перейдя в категорию «престижных».

От каких параметров зависит форма снежинок? Какая наука и для каких целей занимается изучением снега, льда, снежинок?

Первый альбом с зарисовками разных снежинок, сделанных с помощью микроскопа, появился ещё в начале ХIХ в. в Японии . Его создал учёный Дои Тишицура. Почти сто лет спустя другой японский учёный, Укисиро Накайя, создал классификацию снежинок. Его исследования доказали, что привычные нам ветвистые снежинки шестиконечной формы возникают только при определённой температуре: 14–17 °С. При этом влажность воздуха должна быть очень высокой. В остальных случаях снежинки могут приобретать самые различные формы.

Самая распространённая форма снежинок – дендриты (от греч. δέντρο – дерево ). Лучи этих кристаллов похожи на ветви деревьев.

Миром снега и льда занимается наука гляциология . Она возникла в ХVII в. после того, как швейцарский естествоиспытатель О. Соссюр опубликовал книгу об альпийских ледниках. Гляциология существует на стыке множества других наук, в первую очередь физики, геологии и гидрологии. Изучать лёд и снег нужно для того, чтобы знать, как предотвратить снежные лавины и гололёд. Ведь на борьбу с их последствиями во всём мире ежегодно тратятся миллионы долларов. Но если знать природу снега и льда, можно сэкономить немало денег и спасти множество человеческих жизней. А ещё лёд может рассказать об истории Земли. Например, в 70-е гг. гляциологи изучали ледяной покров Антарктиды, бурили скважины и исследовали особенности льда в разных слоях. Благодаря этому удалось узнать о множестве изменений климата, которые происходили на нашей планете на протяжении 400 000 лет.

Занимательные и нестандартные задачи (групповая работа)

На берегу Северного пролива, на северо-востоке острова Ирландия поднимаются невысокие горы Антрим. Они сложены черными базальтами – следами деятельности древних вулканов, высившихся вдоль гигантского разлома, отделившего 60 млн лет назад Ирландию от Великобритании. Потоки чёрных лав, излившихся из этих кратеров, образовали прибрежные горы на ирландском побережье и на Гебридских островах по ту сторону Северного пролива. Удивительная порода этот базальт! Жидкий, легко текучий в расплавленном виде (по склонам вулканов базальтовые потоки несутся порой со скоростью до 50 км/ч), он при остывании и затвердевании трескается, образуя правильные шестигранные призмы. Издали базальтовые обрывы напоминают огромные органы с сотнями чёрных труб. А когда поток лавы стекает в воду, возникают иной раз такие причудливые образования, что трудно не поверить в их волшебное происхождение. Именно такое природное явление можно наблюдать у подножья Антрима. От вулканического массива отделяется здесь своеобразная «дорога в никуда». Дамба возвышается над морем на 6 м и состоит примерно из 40 000 базальтовых колонн. Она похожа на недостроенный мост через пролив, задуманный каким-то сказочным великаном, и носит название «Мостовая Гигантов».

Задача. О каких свойствах кристаллических тел и жидкостей идёт речь? Какие отличия между кристаллическими твёрдыми телами и жидкостями вы знаете? (Ответ. Правильная геометрическая форма является существенным внешним признаком любого кристалла в природных условиях.)

Первый алмаз в Южной Африке нашёл в 1869 г. мальчик-пастух. Через год здесь был основан город Кимберли, по названию которого коренная алмазоносная порода стала называться кимберлитом. Содержание алмазов в кимберлитах очень низкое – не более 0,000 007 3%, что эквивалентно 0,2 г (1 карату) на каждые 3 т кимберлитов. Ныне одна из достопримечательностей Кимберли – огромный котлован глубиной 400 м, вырытый добытчиками алмазов.

Задача. Где применяются ценные свойства алмазов?

«Такая снеговинка (речь идёт о снежинке. – А. С. ), шестигранная, правильная звёздочка, упала Нержину на рукав старой фронтовой порыжевшей шинели».

А.И. Солженицын. В круге первом.

? Почему снежинки имеют правильную форму? (Ответ. Основное свойство кристаллов – симметрия.)

«Окно брякнуло с шумом; стёкла, звеня, вылетели вон, и страшная свиная рожа выставилась, поводя очами, как будто спрашивая: «А что вы тут делаете, добрые люди?»

Н.В. Гоголь.

? Почему стекло разбивается даже при небольшой нагрузке? (Ответ. Стекло относят к хрупким телам, у которых практически отсутствует пластическая деформация, так что упругая деформация непосредственно завершается разрушением.)

«Морозило сильнее, чем с утра; но зато так было тихо, что скрып мороза под сапогами слышался за полверсты».

Н.В. Гоголь. Вечера на хуторе близ Диканьки.

? Почему в мороз снег скрипит под ногами? (Ответ. Снежинки – кристаллики, под ногами они разрушаются, вследствие этого и появляется звук.)

Алмаз алмазом режется.

? Алмаз и графит состоят из одинаковых атомов углерода. Почему же отличаются свойства алмаза и графита? (Ответ. Эти вещества различаются кристаллическим строением. У алмаза прочные ковалентные связи, у графита – слоистая структура.)

? Какие вещества вы знаете, которые не уступают алмазу по прочности? (Ответ. Одним из таких веществ является нитрид бора. Очень прочной ковалентной связью связываются атомы бора и азота в кристаллической решётке нитрида бора. Нитрид бора по твёрдости не уступает алмазу, по прочности и термостойкости превосходит его.)

Туп конец, востёр резец: режет листки, летят куски. Что это? (Ответ. Алмаз.)

? Какое свойство отличает алмаз от других веществ? (Ответ. Твёрдость.)

Самые большие кристаллы были обнаружены в пещере Найка, в мексиканском штате Чиуауа. Некоторые из них в длину достигают 13 м, а в ширину 1 м.

А.Е. Ферсман в начале XX в. описал каменоломню на Южном Урале, заложенную в одном гигантском кристалле полевого шпата.

Заключение

В заключение урока хочу привести уникальный пример использования симметрии. Медоносные пчёлы должны уметь считать и экономить. Чтобы выделить особыми железами всего 60 г воска, им надо съесть 1 кг мёда из нектара и пыльцы, а на постройку средних размеров гнезда требуется около 7 кг сладкой пищи. Ячейки сотов в принципе могут быть квадратными, но пчёлы выбирают шестигранную форму: она обеспечивает самую плотную упаковку личинок, так что на постройку стенок уходит минимум драгоценного воска. Соты вертикальные, ячейки на них расположены с обеих сторон, т. е. дно у них общее – ещё экономия. Они направлены вверх под углом 13°, чтобы не вытекал мёд. В таких сотах помещается несколько килограммов меда. Вот настоящие чудеса природы.

Литература

  1. Арнольд В.И. Математические методы классической механики. М.: Едиториал УРСС, 2003.
  2. Вейль Г. Симметрия: пер с англ. М., 1968.
  3. Гляциологический словарь / Под ред. В.М. Котлякова. Л.: Гидрометеоиздат, 1984.
  4. Компанеец А.С. Симметрия в микро- и макромире. М.: Наука, 1978.
  5. Меркулов Д. Магия жидких кристаллов // Наука и жизнь. 2004. № 12.
  6. Фёдоров Е.С. Симметрия и структура кристаллов. М., 1949.
  7. Физика: энц. для детей. М.: Аванта+, 2000.
  8. Шубников А.В., Копцик В.А. Симметрия в науке и искусстве. Изд-е 2. М., 1972.

В структуре кристаллов к конечным преобразованиям симметрии, входящим в точечную группу симметрии, добавляются еще бесконечные симметрические преобразования.

Основное бесконечное преобразование - трансляция, т.е. беско­нечно повторяющийся перенос вдоль одной прямой на одно и тоже опре­деленное расстояние называемое периодом трансляции. Сочетание трансляций с каждым из элементов симметрии генерирует новые элементы симметрии, бесконечно повторяющиеся в пространстве. Так, совокупность совместно действующих плоскости симметрии и параллельного ей переноса на величину равную половине периода трансляции вдоль плоскости - это плоскость скользящего отражения. Симметрическое преобразование плоскостью скользящего отражения можно описать, указав, как при этом изменяются координаты произвольной точки X, Y, Z. Совокупность оси симметрии и переноса вдоль этой оси, действующих совместно дает винтовую ось симметрии. Винтовые оси в кристаллическом прост­ранстве могут быть только порядков 2,3,4 и 6. Различают левые и правые винтовые оси.

Для каждой структуры характерен ее набор элементарных трансляций или трансляционная группа, которая определяет пространственную решетку.

В зависимости от отношения величин и взаимной ориентации трех основ­ных трансляций а, в, с получаются решетки, отличающиеся друг от друга по своей симметрии. Симметрия органичивает число возможных решеток. Все кристаллические структуры описываются 14 трансляционными группами, со­ответствующими 14 решеткам Бравэ. Решеткой Бравэ называется бесконечная система точек, которая образуется трансляционным повторением одной точки.

14 решеток Бравэ отличаются друг от друга по форме элементарных ячеек и по симметрии и подразделяются на 6 сингоний (см. таблицу).

Элементарные ячейки в решетках Бравэ выбираются так, чтобы 1) их симметрия соответствовала симметрии всей решетки (точнее; она должна совпадать с симметрией голоэдрического класса той системы, к которой относится кристалл), 2) число прямых углов и равных сторон было мак­симальным и 3) объем ячейки минимальным.

В структуре кристалла решетки Вравэ могут быть вставлены одна в другую, а в узлах различных решеток могут стоять как одинаковые, так и различные атомы, как сферически симметричные, так и имеющие реальную кристаллографическую симметрию. Все типы структур описываются 230 пространственными группами симметрии, которые образуются из сочетаний элементов симметрии бесконечных структур. (Пространственной группой симметрии называется сочетание всех возможных преобразований симметрии кристаллической структуры).

Умножение элементов симметрии структур подчиняется теоремам 1-6. Кроме того, из-за добавления бесконечных повторений появляются новые сочетания.

Теорема 7. Последовательное отражение в двух параллельных плоскостях симметрии эквивалентно трансляции на параметр t=2а, где а-расстояние между плоскостями..

Теорема 7а . Любую трансляцию t можно заменить отражением в двух параллельных плоскостях, относящихся друг от друга на расстояние T/ 2.

Теорема 8. Плоскость симметрии и перпендикулярная к ней трансляция с параметром t порождают новые "вставленные" плоскости симметрии, параллельные порождающей, аналогичные ей по типу и отстоящие от нее.

Теорема 9 . Плоскость симметрии и трансляция t, составляющая с плоскостью угол , порождают плоскость скользящего отражения, параллельную порождающей и отстоящую от нее в сторону трансляции на величину(t /2), sinвеличина скольжения вдоль порожденной плоскости равнаt*cos

Теорема 10. Ось симметрии с углом поворота и перпендикулярная к ней трансляция Т порождает такую же ось симметрии, параллельную данной, обстоящую от нее на расстояние (t/2) sin() и расположенную на линии, перпендикулярной к трансляцииt вее середине.

Теорема 11. и переносом t и перпендикулярная к ней трансляция t порождают винтовую ось с тем же углом и тем же переносом, параллельную данной, отстоящую от нее на(t/2) sin (/2) и расположенную на линии, перпендикулярной к трансляции t в ее середине.

Теорема 12 . Ось симметрии с углом поворота и трансляция t составляющая с ней угол , порождают винтовую ось симметрии.

Теорема 13. Винтовая ось симметрии с углом поворота и переносом t 1 и трансляция t, составляющая с осью угол порождает винтовую ось симметрии с тем же углом поворота.

Теорема 14 . Инверсионно- поворотная ось с углом поворота и перпендикулярная к ней трансляция порождают ту же инверсионно -поворотную ось, параллельную порождающей.

Теорема 15 . Инверсионно - поворотная ось с углом поворота и трансляция , составляющая с этой осью угол , порождают инверсионную ось с тем же поворотом параллельную данной.

ЗАДАЧИ

1. Записать матричное представление всех операций симметрии, вхо­дящих в точечную группу mmm.

2. Найти матричное представление и порядок группы симметрии низко­температурной модификации кварца.

3. Известна теорема Эйлера: равнодействующей двух пересекающихся осей симметрии является третья ось симметрии, проходящая через точку пересечения первых двух. Пользуясь матричным представлением элементов симметрии, проиллюстрировать теорему Эйлера на примере класса 4 2 2.

4. Кристалл поворачивают на 90° с последующим отражением в центре инверсии, затем поворачивают на 180° вокруг направления, перпендику­лярного оси первого поворота. Найти матричное представление опера­ции симметрии, которая приводит к тому же результату.

5. Кристалл поворачивают на 120°, затем отражают в центре инверсии. Найти матричное представление операции симметрии, которая приводит к тому же результату. В группу какого элемента симметрии входит эта операция?

Все сведения о кристаллах, необходимые для решения задач, см. в таблицах, помещенных в конце описания.

6. Используя матричное представление элементов симметрии, найти такую операцию симметрии, действие которой давало бы тот же результат, что и действие двух осей второго порядка, пересекающихся под углом 90°.

7. Найти матричное представление операции симметрии, действие которой дает тот же результат, что и действие осей второго порядка, расположенных под углом 60° друг к другу. В группу какого элемента симметрии входит эта операция?

8. Найти матричное представление и порядок точечной группы симметрии дигидрофосфата калия (КДР) для стандартного и нестандартного (4m2) выбора кристаллофизических осей координат.

9. Найти матричное представление точечной группы симметрии 6 2 2.

10. Найти матричное представление и порядок группы 6.

11. Пользуясь матричным представлением операций симметрии, проверить справедливость теоремы ЭЙЛЕРА НА ПРИМЕРЕ точечной группы 2 2 2,

12. Убедиться в справедливости теоремы Эйлера на примере осей второго порядка, располагающихся под углом 45° друг к другу.

13. Каков порядок следующих групп симметрии: m т , 2 2 2, 4 m m, 422?

14. Записать систему генераторов для группы 4/mmm.

15. На примере точечной группы симметрии 2/m проверить, выполняются ли все групповые аксиомы.

16. Используя матричное представление операций симметрии, проверить справедливость теоремы: сочетание оси четного порядка и перпендикулярной ей плоскости дает центр симметрии.

17. Доказать, что в кристаллической решетке отсутствует ось симметрии пятого порядка.

18. Чему равно число атомов в элементарной ячейке в случае а) простой, б) объемноцентрированной и в) гранецентрированной кубических решеток?

19. Чему равно число атомов в элементарной ячейке гекcагональной плотноупакованной решетки?

20. Определить отрезки, которые отсекает на осях решетки плоскость (125).

21. Найти индексы плоскостей, проходящих через узловые точки кристаллической решетки с координатами 9 10 30, если параметры решетки а=3, b =5 и с==6.

22. Даны грани (320) и (11О). Найти символ ребраих пересечения,

23. Даны два ребра и . Найти символ грани, в которой они лежат одновременно.

24. Положение плоскостей в гексагональной системе определяется с помощью четырех индексов. Найти индекс i в плоскостях (100), (010), (110) и (211) гексагональной системы.

25. Элементарная ячейка магния принадлежит к гексагональной системе и имеет параметры a=3,20 и с=5,20.Определить векторы обратной решетки.

26. Выразить углы между векторами обратной решетки через углы прямой решетки.

27. Показать, что решетка, обратная кубической объемноцентрированной, будет кубической гранецентрированной.

28. Найти векторы обратной решетки для кристалла кальцита (СаСО 3), если a =6,36 , =46°6".

29. Доказать, что расстояние между плоскостями (hkl ) решетки кристалла равно обратной величине длины вектора r*hkl из начала координат в точку hkl обратной решетки.

30. В триклинной решетке кианита (Al 2 O 3 , SiO 2) параметры a, b, c и углы , , элементарной ячейки соответственно равны 7,09; 7,72; 5,56 и; 90°55 ; 101°2; 105°44 . Определить расстояние между плоскостями (102).

31. Чему равны расстояния между плоскостями (100), (110) и (111) в кубической решетке с параметром a

32. Определить угол между плоскостями (201) и (310) в ромбической сере с параметрами решетки a=10,437 ,b =12,845 и,С. =24,369

33. Вычислить угол между плоскостями (111) и (102) тетрагонального кристалла галлия с параметрами решетки a=4,50 ,c= 7.64 8.

34. Найти угол, образуемый гранями (100) и (010) кубического кристалла.

35. Доказать, что в кубическом кристалле любое направление перпендикулярно к плоскости (hkl ) с теми же значениями индексов Миллера.

36. Определить угол между телесной диагональю и ребром куба.

37. Определить угол между двумя направлениями и в кристалле триглицинсульфата ((NH 2 CH 2 COOH) 3 *H 2 SO 4) с параметрами элементарной ячейки a=9,42,b =12,64,c=5,73 и углом моноклинности=ПО°23 .

38. Вычислить угол между двумя прямыми и в ромбической решетке медного купороса с параметрами решетки a =4,88 ,b=6,66 и. С =8,32.

Внешний вид кристаллов, полученных различными методами, например выращенных из расплава или раствора, может заметно отличаться друг от друга. В то же время одним из первых открытий в кристаллографии было установление факта, что утлы между гранями кристалла одного и того же вещества неизменны. Такое постоянство углов, как теперь известно, обусловлено закономерным расположением атомов или групп атомов внутри кристалла, то есть наличием некоей симметрии в расположении атомов в кристаллическом твердом теле.

Трансляционная симметрия. Понятие трансляционной симметрии кристалла означает, что в кристалле можно выбрать некоторую наименьшую часть, называемую элементарной ячейкой, пространственным повторением которой - трансляцией - потрем направлениям (вдоль граней ячейки) образуется весь кристалл. Понятия трансляционной симметрии и элементарной ячейки кристалла явились научным обобщением того экспериментального факта, что у кристаллов одного и того же вещества можно мысленно выделить базовый геометрический элемент, из которого можно сконструировать весь кристалл. Глубокий научный смысл этих понятий был выявлен позже, с развитием методов рентгеноструктурного анализа твердых тел.

Элементарная ячейка может содержать одну или несколько молекул, атомов, ионов, пространственное расположение которых в ячейке фиксировано. Элементарная ячейка электрически нейтральна. Если повторяющуюся в кристалле элементарную ячейку представить точкой, то в результате трансляционного повторения этой точки по трем направлениям (не обязательно перпендикулярным) получится трехмерное множество точек, называемое кристаллической решеткой вещества. При этом сами точки называют узлами кристаллической решетки. Кристаллическую решетку можно охарактеризовать векторами основных трансляций а { и а 2 , как показано для двумерного случая на рис. 1.14.

Как видно на рис. 1.14, выбор векторов основных трансляций не является однозначным. Главное, чтобы положение всех эквивалентных точек кристаллической решетки можно было описать линейной комбинацией векторов основных трансляций. При этом совокупность всех векторов решетки образует решетку Браве кристалла. Концы векторов решетки определяют положение узловых точек в решетке.

Рис. 1.14. Варианты возможного выбора векторов трансляций а 1 и а 2 и примитивной решетки (варианты 1,2,3,4)

Параллелепипед, построенный на векторах основных трансляций, называют примитивной ячейкой кристалла, выбор которой в кристалле также неоднозначен. Элементарную ячейку 4 на рис. 1.14, построенную через середины векторов трансляций, называют ячейкой Вигнера - Зейтца.

Кристаллографические индексы. Если в элементарной ячейке J?двумерной кристаллической решетки, показанной на рис. 1.14, провести отрезки прямых линий, параллельные вектору а 2 и проходящие через узлы а и |3, то они разделят вектор я, на три равные части. При трансляции ячейки 3 вдоль векторов трансляций а { и а 2 кристаллическая решетка заполнится прямыми линиями, причем все узлы кристаллической решетки окажутся на этих линиях. Аналогичную операцию можно осуществить и в трехмерной кристаллической решетке, проведя через нее систему плоскостей, причем и в этом случае все узлы трехмерной кристаллической решетки окажутся на этих плоскостях. Указанные плоскости носят название кристаллографических плоскостей решетки. Очевидно, что через кристаллическую решетку можно провести множество различных семейств кристаллографических плоскостей. Очевидно также, что чем меньше расстояние между плоскостями в семействе, тем меньшая плотность попадающих на каждую плоскость (изданного семейства плоскостей) узлов кристаллической решетки.

Кристаллографические плоскости характеризуют индексами Миллера, обозначаемыми тремя числами, заключенными в круглые скобки (hkl ). Эти числа равны количеству отрезков, на которые семейство кристаллографических плоскостей делят векторы основных трансляций. Если плоскости параллельны какому-либо вектору трансляции, то значение соответствующего индекса Миллера равно нулю. Если плоскости пересекают отрицательное направление какого-либо вектора трансляции, то соответствующему индексу присваивают отрицательное значение, ставя черточку над этим индексом. Сказанное для двумерной кристаллической решетки, с приведенными семействами плоскостей (10), (01) и (12), а также плоскостью из семейства (12), хорошо проиллюстрировано на рис. 1.15.

Рис. 1.15. Кристаллографические плоскости }

error: